Mobile robot tipover is a concern as it can create dangerous situations for operators and bystanders, cause collateral damage to the surrounding environment, and result in an aborted mission. Algorithms have been developed by others to assess the stability of the robot, and many of these algorithms have been demonstrated using simulated data. In order to verify that these algorithms accurately match real-world behavior, we have collected data of a mobile robot tipping over and then compared this data to the stability measures provided by three algorithms: Zero-Moment Point (ZMP), Force-Angle stability measure (FA), and Moment-Height Stability measure (MHS). A small mobile robot platform based on the iRobot PackBot drove a course including ramps and obstacles; an IMU and GPS provided inertial and positional data for the algorithms, and the actual tipover event is determined from video footage of the tests. The average normalized measure at tipover event initiation was found to be 0.665 for ZMP, -0.094 for FA, and 0.023 for MHS, where a value of 1 corresponds to resting stability. Standard deviations were 0.38, 0.84, and 0.67, respectively. The measures show a significant amount of noise, which is likely due to the vibrations caused by movement of the tracks and could be reduced by employing additional filtering during data collection. The preliminary real-world data validates these tipover algorithms as able to assess robot stability, and they can be used as part of a tipover avoidance system.
A novel, multi-segmented magnetic crawler robot has been designed for ship hull inspection. In its simplest version, passive linkages that provide two degrees of relative motion connect front and rear driving modules, so the robot can twist and turn. This permits its navigation over surface discontinuities while maintaining its adhesion to the hull. During operation, the magnetic crawler receives forward and turning velocity commands from either a tele-operator or high-level, autonomous control computer. A low-level, embedded microcomputer handles the commands to the driving motors.This paper presents the development of a simple, low-level, leader-follower controller that permits the rear module to follow the front module. The kinematics and dynamics of the two-module magnetic crawler robot are described. The robot's geometry, kinematic constraints and the user-commanded velocities are used to calculate the desired instantaneous center of rotation and the corresponding central-linkage angle necessary for the back module to follow the front module when turning. The commands to the rear driving motors are determined by applying PID control on the error between the desired and measured linkage angle position. The controller is designed and tested using Matlab Simulink. It is then implemented and tested on an early two-module magnetic crawler prototype robot. Results of the simulations and experimental validation of the controller design are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.