The interaction between electromagnetic waves and heat transfer phenomena due to microwave treatment is of utmost importance for an energy-efficient microwave-integrated grinding circuit. In this study, the effect of microwave irradiations on the heat absorptions of crushed particles is carried out by developing a numerical model. Crushed particles are simulated as diced-shaped geometries with different sitting arrangements but similar size distributions. The energy efficiency of the microwave treatment process is studied by introducing temperature-dependent dielectric properties and accounting for the convective heat loss from the particle boundaries to the surrounding environment. The simulations are quantitatively validated with the experimental results for heat over microwave efficiency. Heat absorption of larger particles is found to be significantly higher, and the arrangement of particles exerts a negligible effect on overall energy absorption. It is also found that ores with a larger average diameter can yield higher energy efficiencies, and the maximum absorption can be achieved by placing the particles at certain distances from the waveguide of the microwave.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.