Conservation of cultural heritage is an area where novel scientific techniques are having enormous impact. Given the value and uniqueness of art pieces, non-invasive diagnostic methods are highly appreciated by conservators. Terahertz radiation has shown enormous potential as non-contact probe that can be used for the three-dimensional reconstruction of internal structure of stone-made objects. In this article we report the evaluation of the internal damage state of two art pieces, a medallion from the Castle of Celle and a window sill from the St. Peter of Trier Cathedral. We also used terahertz radiation to follow and assess the restoration process of the window sill. We found that terahertz spectroscopy is an excellent non-destructive evaluation method for stone artwork that shows enormous potential as a tool for conservation.
Plasma waves play an important role in many solid-state phenomena and devices. They also become significant in electronic device structures as the operation frequencies of these devices increase. A prominent example is field-effect transistors (FETs), that witness increased attention for application as rectifying detectors and mixers of electromagnetic waves at gigahertz and terahertz frequencies, where they exhibit very good sensitivity even high above the cutoff frequency defined by the carrier transit time. Transport theory predicts that the coupling of radiation at THz frequencies into the channel of an antenna-coupled FET leads to the development of a gated plasma wave, collectively involving the charge carriers of both the two-dimensional electron gas and the gate electrode. In this paper, we present the first direct visualization of these waves. Employing graphene FETs containing a buried gate electrode, we utilize near-field THz nanoscopy at room temperature to directly probe the envelope function of the electric field amplitude on the exposed graphene sheet and the neighboring antenna regions. Mapping of the field distribution documents that wave injection is unidirectional from the source side since the oscillating electrical potentials on the gate and drain are equalized by capacitive shunting. The plasma waves, excited at 2 THz, are overdamped, and their decay time lies in the range of 25-70 fs. Despite this short decay time, the decay length is rather long, i.e., 0.3-0.5 μm, because of the rather large propagation speed of the plasma waves, which is found to lie in the range of 3.5-7 × 10 6 m/s, in good agreement with theory. The propagation speed depends only weakly on the gate voltage swing and is consistent with the theoretically predicted 1 4 power law.
Crystal formation is a highly debated problem. This report shows that the crystallization of l-(+)-tartaric acid from water follows a non-classical path involving intermediate hydrated states. Analytical ultracentrifugation indicates solution clusters of the initial stages aggregate to form an early intermediate. Terahertz spectroscopy performed during water evaporation highlights a transient increase in the absorption during nucleation; this indicates the recurrence of water molecules that are expelled from the intermediate phase. Besides, a transient resonance at 750 GHz, which can be assigned to a natural vibration of large hydrated aggregates, vanishes after the final crystal has formed. Furthermore, THz data reveal the vibration of nanosized clusters in the dilute solution indicated by analytical ultracentrifugation. Infrared spectroscopy and wide-angle X-ray scattering highlight that the intermediate is not a crystalline hydrate. These results demonstrate that nanoscopic intermediate units assemble to form the first solvent-free crystalline nuclei upon dehydration.
Light-matter interaction with two-dimensional materials gained significant attention in recent years leading to the reporting of weak and strong coupling regimes, and effective nano-laser operation with various structures. Particularly, future applications involving monolayer materials in waveguide-coupled on-chip integrated circuitry and valleytronic nanophotonics require controlling, directing and optimizing photoluminescence. In this context, photoluminescence enhancement from monolayer transition-metal dichalcogenides on patterned semiconducting substrates becomes attractive. It is demonstrated in our work using focussed-ion-beam-etched GaP and monolayer WS 2 suspended on hexagonal-BN buffer sheets. We present a unique optical microcavity approach capable of both efficient in-plane and out-ofplane confinement of light, which results in a WS 2 photoluminescence enhancement by a factor of 10 compared to the unstructured substrate at room temperature. The key concept is the combination of interference effects in both the horizontal direction using a bull's-eye-shaped circular Bragg grating and in vertical direction by means of a multiple reflection model with optimized etch depth of circular air-GaP structures for maximum constructive interference effects of the applied pump and expected emission light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.