(2015) Protective effect of pomegranate seed oil against cisplatin-induced nephrotoxicity in rat, Renal Failure, 37:8, 1338-1343 Purpose: Clinical use of cisplatin is limited by its nephrotoxicity. Cisplatin-induced nephrotoxicity is associated with an increase in oxidative stress, leading ultimately to kidney dysfunction. The aim of this study was to investigate the effect of pomegranate seed oil against nephrotoxicity induced by cisplatin in adult rats. Methods: Animals were divided into four groups. Group I received corn oil (1 mL/kg). Group II received cisplatin (8 mg/kg). Group III and IV received pomegranate seed oil (PSO) 0.4 mL/kg and 0.8 mL/kg one hour before cisplatin injection for 3 days, respectively. Blood samples were collected by cardiac puncture and used for measuring urea and creatinine concentration. Twenty-hour urine samples were collected to measure protein and glucose concentration. The right kidney fixed in formalin for histological examination and the left kidney was homogenized for measurement of malondialdehyde and total sulfhydryl groups. Results: A significant elevation of serum creatinine, urea, urinary glucose, protein concentrations, and non-significant decrease in total thiol content and increase in MDA level in kidney homogenates were observed in cisplatin-treated rats. Also cisplatin reduced animal's body weight. Mild-to-moderate tubular cell necrosis, hyaline casts, and vascular congestion were observed in group II. PSO pre-treatment significantly decreased urinary protein, glucose, and serum creatinine concentration. PSO also caused a decrease in serum urea, renal MDA, and increase in thiol content, but the level of these parameters were not significant. Conclusion: The present results suggest that PSO is an effective agent for the prevention of cisplatin-induced renal dysfunction and oxidative damage in rat.
Chaotic behavior of an electron motion in combined backward propagating electromagnetic wiggler and ion-channel electrostatic fields is studied. The Poincaré surface-of-sections are employed to investigate chaotic behavior of electron motion. It is shown that the electron motion can exhibit chaotic behavior when the ion-channel density is low or medium, while for sufficiently high ion-channel density, the electron motion becomes regular (nonchaotic). Also, the chaotic trajectories decrease when the effects of self-fields of electron beam are taken into account and under Budker condition all trajectories become regular. The above result is in contrast with magnetostatic helical wiggler with axial magnetic field in which chaotic motion is produced by self-fields of electron beam. The chaotic and nonchaotic electron trajectories are confirmed by calculating Liapunov exponents.
Chaotic behavior of an electron motion in a free-electron laser with realistic helical wiggler and ion-channel guiding is studied using Poincaré surface-of-section maps. The effects of a realistic electron beam density on chaotic electron dynamics are investigated by considering an electron beam with Gaussian density profile in radial distance. The effects of self-fields on chaotic electron dynamics are investigated for different Gaussian beam parameters, and the results are compared with those of uniform electron beam. It is shown that the electron chaotic behavior can be controlled by changing the Gaussian beam parameter. Also, the chaotic behavior can be controlled by increasing the ion-channel and/or the electron beam densities.
Electron trajectories and gain in free-electron lasers with three-dimensional helical wiggler and ion-channel guiding Phys. Plasmas 12, 093108 (2005); 10.1063/1.2013307 Electron trajectories and gain in a free-electron laser with realizable helical wiggler and ion-channel guiding Phys. Plasmas 12, 093103 (2005); 10.1063/1.2006690 Self-fields in a free-electron laser with helical wiggler and ion-channel guiding Phys. Plasmas 10, 905 (2003);A theory is developed for a free-electron laser with electromagnetic wiggler and ion-channel guiding. The electron trajectories due to a large amplitude backward propagating electromagnetic wiggler and an ion-channel electrostatic field are obtained and the stability of orbits is discussed. Then the gain equation describing the interaction between an electron and the radiation field is derived in the low-gain-per-pass limit. The results of a numerical study of electron orbits and gain are presented and discussed. It is shown that the maximum gain obtained in an electromagnetic wiggler is about twice the maximum gain obtained in a magnetostatic wiggler.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.