Key Points• Bone marrow adipocytes support AML survival.• AML induces adipocyte lipolysis of triglyceride to free fatty acids and subsequent transport by FABP4. Abstract
Acute myeloid leukemia (AML) is an age-related disease that is highly dependent on the bone marrow (BM) microenvironment. With increasing age, tissues accumulate senescent cells, characterized by an irreversible arrest of cell proliferation and the secretion of a set of proinflammatory cytokines, chemokines, and growth factors, collectively known as the senescence-associated secretory phenotype (SASP). Here, we report that AML blasts induce a senescent phenotype in the stromal cells within the BM microenvironment and that the BM stromal cell senescence is driven by p16INK4a expression. The p16INK4a-expressing senescent stromal cells then feed back to promote AML blast survival and proliferation via the SASP. Importantly, selective elimination of p16INK4a+ senescent BM stromal cells in vivo improved the survival of mice with leukemia. Next, we find that the leukemia-driven senescent tumor microenvironment is caused by AML-induced NOX2-derived superoxide. Finally, using the p16-3MR mouse model, we show that by targeting NOX2 we reduced BM stromal cell senescence and consequently reduced AML proliferation. Together, these data identify leukemia-generated NOX2-derived superoxide as a driver of protumoral p16INK4a-dependent senescence in BM stromal cells. Our findings reveal the importance of a senescent microenvironment for the pathophysiology of leukemia. These data now open the door to investigate drugs that specifically target the “benign” senescent cells that surround and support AML.
Acute myeloid leukemia (AML) cells exhibit a high level of spontaneous apoptosis when cultured in vitro but have a prolonged survival time in vivo, indicating that tissue microenvironment plays a critical role in promoting AML cell survival. In vitro studies have shown that bone marrow mesenchymal stromal cells (BM-MSC) protect AML blasts from spontaneous and chemotherapy-induced apoptosis. Here, we report a novel interaction between AML blasts and BM-MSCs, which benefits AML proliferation and survival. We initially examined the cytokine profile in cultured human AML compared with AML cultured with BM-MSCs and found that macrophage migration inhibitory factor (MIF) was highly expressed by primary AML, and that IL8 was increased in AML/BM-MSC cocultures. Recombinant MIF increased IL8 expression in BMMSCs via its receptor CD74. Moreover, the MIF inhibitor ISO-1 inhibited AML-induced IL8 expression by BM-MSCs as well as BM-MSC-induced AML survival. Protein kinase C b (PKCb) regulated MIF-induced IL8 in BM-MSCs. Finally, targeted IL8 shRNA inhibited BM-MSC-induced AML survival. These results describe a novel, bidirectional, prosurvival mechanism between AML blasts and BM-MSCs. Furthermore, they provide biologic rationale for therapeutic strategies in AML targeting the microenvironment, specifically MIF and IL8.
Oxidative stress as a result of elevated levels of reactive oxygen species (ROS) has been observed in almost all cancers, including leukaemia, where they contribute to disease development and progression. However, cancer cells also express increased levels of antioxidant proteins which detoxify ROS. This includes glutathione, the major antioxidant in human cells, which has recently been identified to have dysregulated metabolism in human leukaemia. This suggests that critical balance of intracellular ROS levels is required for cancer cell function, growth, and survival. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription factor plays a dual role in cancer. Primarily, NRF2 is a transcription factor functioning to protect nonmalignant cells from malignant transformation and oxidative stress through transcriptional activation of detoxifying and antioxidant enzymes. However, once malignant transformation has occurred within a cell, NRF2 functions to protect the tumour from oxidative stress and chemotherapy-induced cytotoxicity. Moreover, inhibition of the NRF2 oxidative stress pathway in leukaemia cells renders them more sensitive to cytotoxic chemotherapy. Our improved understanding of NRF2 biology in human leukaemia may permit mechanisms by which we could potentially improve future cancer therapies. This review highlights the mechanisms by which leukaemic cells exploit the NRF2/ROS response to promote their growth and survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.