Abstract:In this paper, we propose a fractional map based on the integer-order unified map. The chaotic behavior of the proposed map is analyzed by means of bifurcations plots, and experimental bounds are placed on the parameters and fractional order. Different control laws are proposed to force the states to zero asymptotically and to achieve the complete synchronization of a pair of fractional unified maps with identical or nonidentical parameters. Numerical results are used throughout the paper to illustrate the findings.
In this paper, we propose three fractional chaotic maps based on the well known 3D Stefanski, Rössler, and Wang maps. The dynamics of the proposed fractional maps are investigated experimentally by means of phase portraits, bifurcation diagrams, and Lyapunov exponents. In addition, three control laws are introduced for these fractional maps and the convergence of the controlled states towards zero is guaranteed by means of the stability theory of linear fractional discrete systems. Furthermore, a combined synchronization scheme is introduced whereby the fractional Rössler map is considered as a drive system with the response system being a combination of the remaining two maps. Numerical results are presented throughout the paper to illustrate the findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.