Mutations in the TBC1D24 gene are responsible for four neurological presentations: infantile epileptic encephalopathy, infantile myoclonic epilepsy, DOORS (deafness, onychodystrophy, osteodystrophy, mental retardation and seizures) and NSHL (non-syndromic hearing loss). For the latter, two recessive (DFNB86) and one dominant (DFNA65) mutations have so far been identified in consanguineous Pakistani and European/Chinese families, respectively. Here we report the results of a genetic study performed on a large Moroccan cohort of deaf patients that identified three families with compound heterozygote mutations in TBC1D24. Four novel mutations were identified, among which, one c.641G>A (p.Arg214His) was present in the three families, and has a frequency of 2% in control Moroccan population with normal hearing, suggesting that it acts as an hypomorphic variant leading to restricted deafness when combined with another recessive severe mutation. Altogether, our results show that mutations in TBC1D24 gene are a frequent cause (>2%) of NSHL in Morocco, and that due to its possible compound heterozygote recessive transmission, this gene should be further considered and screened in other deaf cohorts.
This study adds to other reports from highly consanguineous North African populations, showing lower frequency of X-linked forms as compared to AR forms of the same primary immunodeficiency. Furthermore, a large number of novel BTK mutations were identified and could further help identify carriers for genetic counseling.
BackgroundIdentification of specific mutations in cancer patients may lead to the discovery of genes, which can affect susceptibility and/or prognosis. It has previously been reported that mutations in BRCA1 and BRCA2 genes are linked to breast cancer. Here, we evaluated the use of the High Resolution Melting (HRM) approach to screen for mutations in exon 11 of BRCA1 gene in Moroccan patients.MethodsHRM analysis was used to screen exon 11 from 71 breast cancer patients in order to detect different variants. Conventional Sanger sequencing was used to confirm the presence of possible mutations. Distribution of different SNPs was determined by SNaPshot analysis software.ResultsIn order to assess the efficacy of the HRM approach to screen for mutations, especially in diagnosis, we first used two samples with previously known mutations, “2924delA and 3398delC”. Indeed, these previously known sequence variants were detected by the HRM approach and yielded melting curves with atypical shape relative to wild-type control sequences. We then analyzed, 69 samples from breast cancer patients using the HRM method, and were able to detect two samples with atypical curves. Sequencing of the two samples, using the conventional Sanger approach, confirmed the presence of the same SNP (c.2612C > T) in both samples.ConclusionsOur results strongly suggest that the HRM approach represents a reliable and highly sensitive method for mutation scanning, especially in diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.