With the rapid development and wide use of Global Positioning System in technology tools, such as smart phones and touch pads, many people share their personal experience through their trajectories while visiting places of interest. Therefore, trajectory query processing has emerged in recent years to help users find their best trajectories. However, with the huge amount of trajectory points and text descriptions, such as the activities practiced by users at these points, organizing these data in the index becomes tedious. Therefore, the parallel method becomes indispensable. In this paper, we have investigated the problem of distributed trajectory query processing based on the distance and frequent activities. The query is specified by start and final points in the trajectory, the distance threshold, and a set of frequent activities involved in the point of interest of the trajectory.As a result, the query returns the shortest trajectory including the most frequent activities with high support and high confidence. To simplify the query processing, we have implemented the Distributed Mining Trajectory R-Tree index (DMTR-Tree). For this method, we initially managed the large trajectory dataset in distributed R-Tree indexes.Then, for each index, we applied the frequent itemset Apriori algorithm for each point to select the frequent activity set. For the faster computation of the above algorithms, we utilized the cluster computing framework of Apache Spark with MapReduce as the programing model. The experimental results show that the DMTR-Tree index and the query-processing algorithm are efficient and can achieve the scalability.
Rapid advancements of location-based information provided by publicly available GPS-enabled mobiles devices boost the generation of massive trajectory data. Recently, numerous researchers have addressed many problems regarding trajectory data, which is based on storage and queries processing. Further, a wide spectrum of application domains can benefit from trajectory data mining including trajectory organization as well as queries. Therefore, large-scale trajectory data has received increasing attention in research fields as well as in industry. As the massive trajectory data processing exceeds the power of centralized approaches used previously, in this paper, we survey various existing tools used to process large-scale trajectory data in a distributed way, e.g. MapReduce, Hadoop, and Spark. Furthermore, this paper reviews an extensive collection of existing applications of movement objects, including trajectory data mining and frequent trajectory. We also propose an open interesting research direction, which is challenging and has not been explored up until now, to improve the quality of trajectory query.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.