This paper proposes a partial differential equation model based on the model introduced by V. A. Kuznetsov and M. A. Taylor, which explains the dynamics of a tumor–immune interaction system, where the immune reactions are described by a Michaelis–Menten function. In this work, time delay and diffusion process are considered in order to make the studied model closer to reality. Firstly, we analyze the local stability of equilibria and the existence of Hopf bifurcation by using the delay as a bifurcation parameter. Secondly, we use the normal form theory and the center manifold reduction to determine the normal form of Hopf bifurcation for the studied model. Finally, some numerical simulations are provided to illustrate the analytic results. We show how diffusion has a significant effect on the dynamics of the delayed interaction tumor–immune system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.