Abstract-This paper focuses on the electromagnetic compatibility domain, coupling in microwave circuits and wideband (WB) impedance matching in time domain using a purely temporal method, such as the centered-points Finite Difference Time Domain (FDTD). The paper here presents a new approach of WB impedance matching in transient regime and coupling context, of active circuits such as multiple complex nonlinear components (represented here by metal semiconductor fieldeffect transistors (MESFETs)), using Nonuniform Multiconductor Transmission Lines (NMTL) with frequency dependent losses and FDTD as modeling method. The FDTD method has several positive aspects such as the ease to introduce nonlinear components in the algorithm, the ease to use NMTL and the gain in simulation time and memory space. Also the FDTD method allows the study of WB impedance matching in time domain without recourse to the frequency domain. Systematic comparisons of the results of this method with those obtained by PSpice are done to validate this study. These comparisons show a good agreement between the method presented here and PSpice. The technique presented in this paper shows higher efficiency and ease to implement when compared to PSpice in regard to the treatment of frequency dependent losses, or shapes of transmission lines.
<span lang="EN-US">In this paper, our work is devoted to a time domain analysis of field-to-line coupling model. The latter is designed with a uniform microstrip multiconductor transmission line (MTL), connected with a mixed load which can be linear as a resistance, nonlinear like a diode or complex nonlinear as a Metal Semiconductor Field-Effect Transistor (MESFET). The finite difference time-domain technique (FDTD) is used to compute the expression of voltage and current at the line. The primary advantage of this method over many existing methods is that nonlinear terminations may be readily incorporated into the algorithm and the analysis. The numerical predictions using the proposed method show a good agreement with the GHz Transverse Electro Magnetic (GTEM) measurement.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.