This study proposes a new predictive segmentation method for liver tumors detection using computed tomography (CT) liver images. In the medical imaging field, the exact localization of metastasis lesions after acquisition faces persistent problems both for diagnostic aid and treatment effectiveness. Therefore, the improvement in the diagnostic process is substantially crucial in order to increase the success chance of the management and the therapeutic follow-up. The proposed procedure highlights a computerized approach based on an encoder–decoder structure in order to provide volumetric analysis of pathologic tumors. Specifically, we developed an automatic algorithm for the liver tumors defect segmentation through the Seg-Net and U-Net architectures from metastasis CT images. In this study, we collected a dataset of 200 pathologically confirmed metastasis cancer cases. A total of 8,297 CT image slices of these cases were used developing and optimizing the proposed segmentation architecture. The model was trained and validated using 170 and 30 cases or 85% and 15% of the CT image data, respectively. Study results demonstrate the strength of the proposed approach that reveals the superlative segmentation performance as evaluated using following indices including F1-score = 0.9573, Recall = 0.9520, IOU = 0.9654, Binary cross entropy = 0.0032 and p-value <0.05, respectively. In comparison to state-of-the-art techniques, the proposed method yields a higher precision rate by specifying metastasis tumor position.
BACKGROUD: Hydrocephalus is the most common anomaly of the fetal head characterized by an excessive accumulation of fluid in the brain processing. The diagnostic process of fetal heads using traditional evaluation techniques are generally time consuming and error prone. Usually, fetal head size is computed using an ultrasound (US) image around 20–22 weeks, which is the gestational age (GA). Biometrical measurements are extracted and compared with ground truth charts to identify normal or abnormal growth. METHODS: In this paper, an attempt has been made to enhance the Hydrocephalus characterization process by extracting other geometrical and textural features to design an efficient recognition system. The superiority of this work consists of the reduced time processing and the complexity of standard automatic approaches for routine examination. This proposed method requires practical insidiousness of the precocious discovery of fetuses’ malformation to alert the experts about the existence of abnormal outcome. The first task is devoted to a proposed pre-processing model using a standard filtering and a segmentation scheme using a modified Hough transform (MHT) to detect the region of interest. Indeed, the obtained clinical parameters are presented to the principal component analysis (PCA) model in order to obtain a reduced number of measures which are employed in the classification stage. RESULTS: Thanks to the combination of geometrical and statistical features, the classification process provided an important ability and an interesting performance achieving more than 96% of accuracy to detect pathological subjects in premature ages. CONCLUSIONS: The experimental results illustrate the success and the accuracy of the proposed classification method for a factual diagnostic of fetal head malformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.