Many fields make use nowadays of machine learning (ML) enhanced applications for cost optimization, scheduling or forecasting, including the energy sector. However, these very ML algorithms consume a significant amount of energy, sometimes going against the whole purpose of their employment. To this day, solutions for an energy-efficient execution of these algorithms have not been addressed adequately. In this paper, we demonstrate the advantage of executing ML algorithms on mobile devices (ARM) over a standard server machine (RISC), from the perspective of energy. To do so, we first propose a novel methodology to quantify the amount of energy consumed by an ML algorithm. Then, we compare the energy consumption of existing algorithms running on mobile devices and server machines. To motivate running ML algorithms on mobile devices, we also propose a new peer-to-peer personalized ML algorithm (P3) that shows better convergence properties than related works, and provably converging to a ball centered at a critical point of a non-convex cost function, under mild assumptions. Most importantly, we show that running the P3 algorithm on mobile devices is extremely energy-efficient, consuming 2700x, 200x and 20x less energy than centralized learning algorithms for 10, 100, and 300 peers respectively. Finally, unlike centralized learning algorithms, the proposed P2P algorithm can generate personalized models, and does not have issues of single-point-of-failure nor data privacy. Thus, we give evidence on the supremacy of our proposed P3 algorithm over the other state-of-the-art centralized ML ones.
CCS CONCEPTS• Computing methodologies → Machine learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.