Outbreaks of contagious diseases underscore the ever-looming threat of new epidemics. Compared to other disasters that inflict physical damage to infrastructure systems, epidemics can have more devastating and prolonged impacts on the population. This paper investigates the interdependent economic and productivity risks resulting from epidemic-induced workforce absenteeism. In particular, we develop a dynamic input-output model capable of generating sector-disaggregated economic losses based on different magnitudes of workforce disruptions. An ex post analysis of the 2009 H1N1 pandemic in the National Capital Region (NCR) reveals the distribution of consequences across different economic sectors. Consequences are categorized into two metrics: (i) economic loss, which measures the magnitude of monetary losses incurred in each sector, and (ii) inoperability, which measures the normalized monetary losses incurred in each sector relative to the total economic output of that sector. For a simulated mild pandemic scenario in NCR, two distinct rankings are generated using the economic loss and inoperability metrics. Results indicate that the majority of the critical sectors ranked according to the economic loss metric comprise of sectors that contribute the most to the NCR's gross domestic product (e.g., federal government enterprises). In contrast, the majority of the critical sectors generated by the inoperability metric include sectors that are involved with epidemic management (e.g., hospitals). Hence, prioritizing sectors for recovery necessitates consideration of the balance between economic loss, inoperability, and other objectives. Although applied specifically to the NCR region, the proposed methodology can be customized for other regions.
Influenza pandemic is a serious disaster that can pose significant disruptions to the workforce and associated economic sectors. This article examines the impact of influenza pandemic on workforce availability within an interdependent set of economic sectors. We introduce a simulation model based on the dynamic input-output model to capture the propagation of pandemic consequences through the National Capital Region (NCR). The analysis conducted in this article is based on the 2009 H1N1 pandemic data. Two metrics were used to assess the impacts of the influenza pandemic on the economic sectors: (i) inoperability, which measures the percentage gap between the as-planned output and the actual output of a sector, and (ii) economic loss, which quantifies the associated monetary value of the degraded output. The inoperability and economic loss metrics generate two different rankings of the critical economic sectors. Results show that most of the critical sectors in terms of inoperability are sectors that are related to hospitals and health-care providers. On the other hand, most of the sectors that are critically ranked in terms of economic loss are sectors with significant total production outputs in the NCR such as federal government agencies. Therefore, policy recommendations relating to potential mitigation and recovery strategies should take into account the balance between the inoperability and economic loss metrics.
Outbreaks of infectious diseases, such as pandemics, can result in adverse consequences and major economic losses across various economic sectors. Based on findings from the 2009 A H1N1 pandemic in the National Capital Region (NCR), this paper presents a recovery analysis for workforce disruptions using economic input-output modeling. The model formulation takes into consideration the dynamic interdependencies across sectors in an economic system in addition to the inherent characteristics of the economic sectors. From a macroeconomic perspective, the risk of the influenza disaster can be modeled using two risk metrics. First, there is the level of inoperability, which represents the percentage difference between the ideal production level and the degraded production level. Second, the economic loss metric represents the financial value associated with the reduced output. The contribution of this work revolves around the modeling of uncertainties triggered by new perturbations to interdependent economic sectors within an influenza pandemic timeline. We model the level of inoperability of economic sectors throughout their recovery horizon from the initial outbreak of the disaster using a dynamic model. Moreover, we use the level of inoperability values to quantify the cumulative economic losses incurred by the sectors within the recovery horizon. Finally, we revisit the 2009 NCR pandemic scenario to demonstrate the use of uncertainty analysis in modeling the inoperability and economic loss behaviors due to time-varying perturbations and their associated ripple effects to interdependent economic sectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.