Fouling phenomenon remains at the forefront of problems that concern manufacturers using heat exchangers. Despite the large number of studies carried out, the mechanism and the evolution of this phenomenon remain poorly understood. In the dairy industry, fouling is a very important parameter seen as it can affect the quality of food product. Studies carried out on this phenomenon during milk heat treatment have led to the conclusion that lacotglobulin protein is the main precursor of fouling. Indeed, the thermal instability of this protein undergoes chemical reactions generating an aggregate that accumulates on the hot walls of heat exchanger. In this work, an attempt to model, numerically, milk fouling during pasteurization was carried out. Wall temperature and fouling thickness distributions were studied along the channel. This permits to determine a mathematical relationship between fouling thickness and wall temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.