Here, we describe the superficial appearance of the brain of the rarely studied tree pangolin. Phylogenetic analyses have placed the pangolins, order Pholidota, as a sister group to the order Carnivora. The majority of features visible on the surface of the tree pangolin brain, and its overall appearance can be described as typically mammalian. The pattern of sulci and gyri, while simple, appears very similar to that observed in carnivores. Two derived features of the Pholidota were observed, the first being the rostral decussation of the pyramidal tract, which instead of occurring at the spinomedullary junction, decussates at the level of the caudal pole of the facial nerve nucleus in the rostral medulla oblongata. This appears to be related to the need for voluntary control of the tongue, with a potentially enlarged corticobulbar tract ending in the hypoglossal nucleus. The second derived feature is the very short spinal cord, which terminates midway along the thoracic vertebrae before giving rise to a long and extensive cauda equina. This foreshortened spinal cord appears to be related to anisotropic growth of the somatic and neural elements following early development of the central nervous system. The olfactory system appears to be generally enlarged and is likely the predominant sense used in foraging. Vision and hearing do not appear specialized based on the relative size of the superior and inferior colliculi, but potential somatic specializations indicate that the somatosensory system is heavily relied upon for food consumption and prehensile tail usage.
This study employed a range of neuroanatomical stains to determine the organization of the main and accessory olfactory systems within the brain of the tree pangolin. The tree pangolin has a typically mammalian olfactory system, but minor variations were observed. The main olfactory system is comprised of the layered main olfactory bulb (MOB), the anterior olfactory nucleus (AON), the rostral olfactory cortex (including the taenia tecta, anterior hippocampal continuation and induseum griseum), the olfactory tubercle (Tu), the lateral olfactory tract (lot) and the olfactory limb of the anterior commissure, the nucleus of the lateral olfactory tract (NLOT), the piriform cortex (PIR) and a typically mammalian rostral migratory stream (RMS). The accessory olfactory system included the layered accessory olfactory bulb (AOB) and the nucleus of the accessory olfactory tract (NAOT). Volumetric analysis of the relative size of the MOB and PIR indicate that the tree pangolin has an olfactory system that occupies a proportion of the brain typical for the majority of mammals. Within the MOB, the glomeruli of the tree pangolin, at 200 μm diameter, are larger than observed in most other mammalian species, and the MOB lacks a distinct internal plexiform layer. In addition, the laminate appearance of the NLOT was not observed in the tree pangolin. The accessory olfactory system appears to lack the posterior compartment of the accessory olfactory bulb. These observations are contextualized in relation to olfactory-mediated behaviors in pangolins.
This research sought to investigate the possible neuroprotective effects of honey against lead (Pb)-induced neurotoxicity. Twenty four male Wistar rats were divided into four groups: Control group that received 1 ml/kg distilled orally for 28 days; while groups II-IV received 0.2% lead in drinking water and 1 ml/kg of distilled water, 1 ml/kg of honey, 1.5 ml/kg of honey respectively for 28 days. Anxiety and exploratory activities were determined in the open field test. Memory function was determined using Morris water maze after which the animals were sacrificed. The brains were then excised, homogenized and Lipid peroxidation (MDA), Superoxide dismutase (SOD), Catalase, Glutathione (GSH) and Glutathione -S- Transferase (GST) activities were determined in the brains. Results showed that lead exposure causes decrease in locomotor and exploratory activities; increase anxiety, memory impairment, lipid peroxidation and decrease antioxidant activities. However, co-administration of honey with lead inhibited neurotoxicity as indicated by the improvement in memory function as evidenced by decreased latency period and increased in time spent in target quadrant in honey-fed rats compared to the lead-exposed animals. Furthermore, honey increased locomotion, exploration and decreased anxiety in lead-exposed rats as indicated by the frequency of rearing, freezing duration and the number of line crossed by animals. Also administration of honey improves antioxidant activities as shown by increased brain SOD, GST and GSH activities compared to the lead-treated groups but no significant effect on MDA level. It can be concluded that honey has neuroprotective effects against lead-induced cognitive deficit probably by enhancing antioxidant activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.