Concentration-discharge (c-Q) plots are routinely used as an integrated signal of watershed response to infer solute sources and travel pathways. However, the interpretation of c-Q data can be difficult unless these data are fitted using statistical models. Such models are frequently applied for geogenic solutes, but it is unclear to what extent they might aid in the investigation of nutrient export patterns, particularly for total dissolved phosphorus (TDP) which is a critical driver of downstream eutrophication problems. The goal of the present study was therefore to statistically model c-Q relations (where c is TDP concentrations) in a set of contrasting watersheds in the Northern Great Plains-ranging in size from 0.2 to 1000+ km 2 -to assess the controls of landscape properties on TDP transport dynamics. Six statistical models were fitted to c-Q data, notably (a) one linear model, (b) one model assuming that c-Q relations are driven by the mixing of end-member waters from different landscape locations (i.e., hydrograph separation), (c) one model relying on a biogeochemical stationarity hypothesis (i.e., power law), (d) one model hypothesizing that c-Q relations change as a function of the solute subsurfacecontact time (i.e., hyperbolic model), and (e) two models assuming that solute fluxes are mostly dependent on reaction rates (i.e., chemical models). Model performance ranged from mediocre (R 2 < 0.2) to very good (R 2 > 0.9), but the hydrograph separation model seemed most universal.No watershed was found to exhibit chemostatic behaviour, but many showed signs of dilution or enrichment behaviour. A tendency toward a multi-model fit and better model performance was observed for watersheds with moderate slope and higher effective drainage area. The relatively poor model performance obtained outside these conditions illustrates the likely importance of controls on TDP concentrations in the region that are independent of flow dynamics.
Numerous studies have examined the impact of prairie pothole wetlands on overall watershed dynamics. However, very few have looked at individual wetland dynamics across a continuum of alteration status using subdaily hydrometric data. Here, the importance of surface and subsurface water storage dynamics in the prairie pothole region was documented by (1) characterizing surface fill-spill dynamics in intact and consolidated wetlands; (2) quantifying water-table fluctuations and the occurrence of overland flow downslope of fully drained wetlands; (3) assessing the relation (or lack thereof) between intact, consolidated or drained wetland hydrological behaviour, and stream dynamics; and (4) relating wetland hydrological behaviour to landscape characteristics. Focus was on southwestern Manitoba, Canada, where ten intact, three consolidated, seven fully drained wetlands, and a nearby creek were monitored over two years with differing antecedent storage conditions. Hourly hydrological time series were used to compute behavioural metrics reflective of year-specific and season-specific wetland dynamics. Behavioural metrics were then correlated to wetland physical characteristics to identify landscape controls on wetland hydrology. Predictably, more frequent spillage or overland flow was observed when antecedent storage was high. Consolidated wetlands had a high degree of water permanence and a greater frequency of fill-spill events than intact wetlands. Shallow and highly responsive water tables were present downslope of fully drained wetlands. Potential wetland-stream connectivity was also inferred via time-series analysis, while some landscape characteristics (e.g., wetland surface, catchment area, and storage volume) strongly correlated with wetland behavioural metrics. The nonstationarity of dominant processes was, however, evident through the lack of consistent correlations across seasons. This, therefore, highlights the importance of combining multiyear high-frequency hydrometric data and detailed landscape analyses in wetland hydrology studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.