Molecular target therapies using first-generation, reversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI), such as gefitinib or erlotinib, have been shown to be effective for patients with non-small cell lung cancer (NSCLC) who harbor activating mutations in EGFR. However, these patients eventually develop resistance to the reversible TKIs, and this has led to the development of second-generation, irreversible EGFR inhibitors. Currently, the mechanism of acquired resistance to irreversible EGFR inhibitors is not clear. Using an in vitro cell culture system, we modeled the acquired resistance to first-line treatment with second-generation EGFR-TKIs using an EGFR-mutant NSCLC cell line. Here, we report a mechanism of resistance involving T790M secondary mutation as well as a corresponding clinical case. The results of these findings suggest that inhibition of EGFR by currently available second-generation EGFR-TKIs may not be sufficient to physiologically prevent the emergence of cells that are still dependent on EGFR signaling. This finding bears important implications on the limitations of currently available second-generation EGFR-TKIs. Mol Cancer Ther; 11(3); 784-91. Ó2012 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.