While early plasma transfusion for the treatment of patients with ongoing major hemorrhage is widely accepted as part of the standard of care in the hospital setting, logistic constraints have limited its use in the out-of-hospital setting. Freeze-dried plasma (FDP), which can be stored at ambient temperatures, enables early treatment in the out-of-hospital setting. Point-of-injury plasma transfusion entails several significant advantages over currently used resuscitation fluids, including the avoidance of dilutional coagulopathy, by minimizing the need for crystalloid infusion, beneficial effects on endothelial function, physiological pH level, and better maintenance of intravascular volume compared with crystalloid-based solutions. The Israel Defense Forces Medical Corps policy is that plasma is the resuscitation fluid of choice for selected, severely wounded patients and has thus included FDP as part of its armamentarium for use at the point of injury by advanced life savers, across the entire military. We describe the clinical rationale behind the use of FDP at the point-of-injury, the drafting of the administration protocol now being used by Israel Defense Forces advanced life support providers, the process of procurement and distribution, and preliminary data describing the first casualties treated with FDP at the point of injury. It is our hope that others will be able to learn from our experience, thus improving trauma casualty care around the world.
Glow discharge plasma, derived from direct-current gas breakdown, is investigated in order to realize an inexpensive terahertz (THz) room-temperature detector. Preliminary results for THz radiation show that glow discharge indicator lamps as room-temperature detectors yield good responsivity and noise-equivalent power. Development of a focal plane array (FPA) using such devices as detectors is advantageous since the cost of a glow discharge detector is approximately $0.2-$0.5 per lamp, and the FPA images will be diffraction limited. The detection mechanism of the glow discharge detector is found to be the enhanced diffusion current, which causes the glow discharge detector bias current to decrease when exposed to THz radiation.
Submariners taking part in prolonged missions are exposed to environmental factors that may adversely affect bone health. Among these, relatively high levels of CO(2), lack of sunlight exposure affecting vitamin D metabolism, limited physical activity, and altered dietary habits. The aims of this study were to examine the effect of a prolonged submersion (30 days) on changes in bone strength using quantitative bone speed of sound and in markers of bone metabolism that include bone turnover (BAP, PINP, TRAP5b, and CTx) and endocrine regulators (serum calcium, PTH, and 25[OH]D) in a group of 32 young healthy male submariners. The prolonged submersion led to increases in body weight and BMI and to a decrease in fitness level. There was a significant decrease in bone strength following the submersion. Speed of sound exhibited continued decline at 4 weeks after return to shore and returned to baseline levels at the 6-month follow-up. There was a significant increase in circulating calcium level. PTH and 25(OH)D levels decreased significantly. Significant decreases were observed in both TRAP5b and CTx levels, markers of bone resorption, as well as in N-terminal propeptide of type I collagen (PINP), a bone formation marker. Prolonged submersion led to a significant decrease in bone strength, accompanied by an overall decrease in bone metabolism. Bone strength was regained only 6 months after return to shore. Prevention and/or rehabilitation programs should be developed following periods of relative disuse even for young submariners. The effects of repeated prolonged submersions on bone health are yet to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.