Electroencephalography (EEG) is an important tool for studying the human brain activity and epileptic processes in particular. EEG signals provide important information about epileptogenic networks that must be analyzed and understood before the initiation of therapeutic procedures. Very small variations in EEG signals depict a definite type of brain abnormality. The challenge is to design and develop signal processing algorithms which extract this subtle information and use it for diagnosis, monitoring and treatment of patients with epilepsy. This paper presents a review of wavelet techniques for computer-aided seizure detection and epilepsy diagnosis with an emphasis on research reported during the past decade. A multiparadigm approach based on the integration of wavelets, nonlinear dynamics and chaos theory, and neural networks advanced by Adeli and associates is the most effective method for automated EEG-based diagnosis of epilepsy.
AbstractAutism spectrum disorder (ASD) is a complex neurobiological disorder characterized by neuropsychological and behavioral deficits. Cognitive impairment, lack of social skills, and stereotyped behavior are the major autistic symptoms, visible after a certain age. It is one of the fastest growing disabilities. Its current prevalence rate in the U.S. estimated by the Centers for Disease Control and Prevention is 1 in 68 births. The genetic and physiological structure of the brain is studied to determine the pathology of autism, but diagnosis of autism at an early age is challenging due to the existing phenotypic and etiological heterogeneity among ASD individuals. Volumetric and neuroimaging techniques are explored to elucidate the neuroanatomy of the ASD brain. Nuroanatomical, neurochemical, and neuroimaging biomarkers can help in the early diagnosis and treatment of ASD. This paper presents a review of the types of autism, etiologies, early detection, and treatment of ASD.
A method is presented for investigation of EEG of children with autistic spectrum disorder using complexity and chaos theory with the goal of discovering a nonlinear feature space. Fractal Dimension is proposed for investigation of complexity and dynamical changes in autistic spectrum disorder in brain. Two methods are investigated for computation of fractal dimension: Higuchi's Fractal Dimension and Katz's Fractal Dimension. A wavelet-chaos-neural network methodology is presented for automated EEG-based diagnosis of autistic spectrum disorder. The model is tested on a database of eyes-closed EEG data obtained from two groups: nine autistic spectrum disorder children, 6 to 13 years old, and eight non-autistic spectrum disorder children, 7 to 13 years old. Using a radial basis function classifier, an accuracy of 90% was achieved based on the most significant features discovered via analysis of variation statistical test, which are three Katz's Fractal Dimensions in delta (of loci Fp2 and C3) and gamma (of locus T6) EEG sub-bands with P < 0.001.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.