A numerical and experimental investigation is performed into the feasibility of fabricating IN713LC components using selective laser melting (SLM) through an appropriate control of the solidification speed, microstructure formation and element segregation. A modified Cellular Automaton (CA) model is developed to explore the nucleation, grain growth and element segregation behavior of IN713LC during ultra-fast solidification. It is found that the undesired phase formation which occurs during SLM processing of IN713LC is caused by the micro segregation of Nb, Ti, Mo and C at the grain boundaries. It is further shown that the micro segregation intensity depends on the solidification speed, which is determined in turn by the laser energy density. In particular, a lower laser energy density increases the solidification speed and results in a more uniform solid phase, thereby reducing the risk of crack formation. The simulation results are verified by experimental investigation. The results confirm that a lower laser energy density reduces the crack density and crack length. Finally, a crack-free IN713LC SLM sample is successfully produced by reducing the energy density from 360 to 170 J/m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.