Anomaly detection is a classical problem in computer vision, namely the determination of the normal from the abnormal when datasets are highly biased towards one class (normal) due to the insufficient sample size of the other class (abnormal). While this can be addressed as a supervised learning problem, a significantly more challenging problem is that of detecting the unknown/unseen anomaly case that takes us instead into the space of a one-class, semi-supervised learning paradigm. We introduce such a novel anomaly detection model, by using a conditional generative adversarial network that jointly learns the generation of high-dimensional image space and the inference of latent space. Employing encoder-decoder-encoder sub-networks in the generator network enables the model to map the input image to a lower dimension vector, which is then used to reconstruct the generated output image. The use of the additional encoder network maps this generated image to its latent representation. Minimizing the distance between these images and the latent vectors during training aids in learning the data distribution for the normal samples. As a result, a larger distance metric from this learned data distribution at inference time is indicative of an outlier from that distribution -an anomaly. Experimentation over several benchmark datasets, from varying domains, shows the model efficacy and superiority over previous state-of-the-art approaches.
Despite inherent ill-definition, anomaly detection is a research endeavour of great interest within machine learning and visual scene understanding alike. Most commonly, anomaly detection is considered as the detection of outliers within a given data distribution based on some measure of normality. The most significant challenge in real-world anomaly detection problems is that available data is highly imbalanced towards normality (i.e. non-anomalous) and contains a most a sub-set of all possible anomalous samples -hence limiting the use of well-established supervised learning methods. By contrast, we introduce an unsupervised anomaly detection model, trained only on the normal (non-anomalous, plentiful) samples in order to learn the normality distribution of the domain, and hence detect abnormality based on deviation from this model. Our proposed approach employs an encoder-decoder convolutional neural network with skip connections to thoroughly capture the multi-scale distribution of the normal data distribution in highdimensional image space. Furthermore, utilizing an adversarial training scheme for this chosen architecture provides superior reconstruction both within high-dimensional image space and a lower-dimensional latent vector space encoding. Minimizing the reconstruction error metric within both the image and hidden vector spaces during training aids the model to learn the distribution of normality as required. Higher reconstruction metrics during subsequent test and deployment are thus indicative of a deviation from this normal distribution, hence indicative of an anomaly. Experimentation over established anomaly detection benchmarks and challenging real-world datasets, within the context of X-ray security screening, shows the unique promise of such a proposed approach.
Monocular depth estimation using learning-based approaches has become promising in recent years. However, most monocular depth estimators either need to rely on large quantities of ground truth depth data, which is extremely expensive and difficult to obtain, or predict disparity as an intermediary step using a secondary supervisory signal leading to blurring and other artefacts. Training a depth estimation model using pixel-perfect synthetic data can resolve most of these issues but introduces the problem of domain bias. This is the inability to apply a model trained on synthetic data to real-world scenarios. With advances in image style transfer and its connections with domain adaptation (Maximum Mean Discrepancy), we take advantage of style transfer and adversarial training to predict pixel perfect depth from a single real-world color image based on training over a large corpus of synthetic environment data. Experimental results indicate the efficacy of our approach compared to contemporary state-of-the-art techniques.
Despite significant recent progress in the area of Brain-Computer Interface (BCI), there are numerous shortcomings associated with collecting Electroencephalography (EEG) signals in real-world environments. These include, but are not limited to, subject and session data variance, long and arduous calibration processes and predictive generalisation issues across different subjects or sessions. This implies that many downstream applications, including Steady State Visual Evoked Potential (SSVEP) based classification systems, can suffer from a shortage of reliable data. Generating meaningful and realistic synthetic data can therefore be of significant value in circumventing this problem. We explore the use of modern neural-based generative models trained on a limited quantity of EEG data collected from different subjects to generate supplementary synthetic EEG signal vectors, subsequently utilised to train an SSVEP classifier. Extensive experimental analysis demonstrates the efficacy of our generated data, leading to improvements across a variety of evaluations, with the crucial task of cross-subject generalisation improving by over 35% with the use of such synthetic data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.