Post-combustion carbon capture with solvent designed to sequestrate carbon from power plant is a promising and well-known technology. However, a vital drawback is the reduction of the power plant output due to the energy required to separate captured CO2 from the solvent, known as a re-boiler duty. In this paper, two configurations were simulated and economically examined to mitigate the re-boiler duty and power loss from the 495 MW West Damietta power plant, Egypt. The first approach is to increase carbon concentrations in the feed to carbon capture plant by recycling part of exhaust gas back to the combustion chamber with different ratios (0%–35%), the second approach is implementing parabolic-trough solar collectors to handle the reboiler load instead of low-pressure steam extracted from the power plant. Both power and CO2 capturing plants were simulated using Aspen Hysys. Parabolic trough solar collector plant was simulated using system advisor model software. The results revealed that increasing carbon content led to a remarkable decrease in reboiler duty by up to around 20%. It was also found that integrating the solar plant with thermal storage system highly improved the optimum production compared to plant without thermal storage. Carbon increase also affected the levelized cost of energy which had 1.39% reduction and 6% decrease in carbon cost of avoidance using 35% recirculation ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.