Residual stresses have in the past been introduced to manipulate growth rates and shapes of cracks under cyclic loads. Previously, the effectiveness of shot peening in retarding the rate of fatigue crack growth was experimentally studied. It was shown that the compressive residual stresses arising from the shot peening process can affect the rate of crack growth. Laser Shock Peening can produce a deeper compressive stress field near the surface than shot peening. This advantage makes this technique desirable for the manipulation of crack growth rates. This paper describes an experimental program that was carried out to establish this effect in which steel specimens were partially laser peened and subsequently subjected to cyclic loading to grow fatigue cracks. The residual stress fields generated by the laser shock peening process were measured using the neutron diffraction technique. A state of compressive stress was found near the surface and tensile stresses were measured in the midthickness of the specimens. Growth rates of the cracks were observed to be more affected by the tensile core than by the compressive surface stresses.
Recent developments in harnessing wind energy propose new, radically different designs to alleviate some of the difficulties associated with conventional wind turbines. New designs however require testing for a variety of reasons ranging from gaining confidence in the analytical models used in the design and development through to satisfaction of certification requirements. Medium‐scale prototype testing of large‐scale concepts, where parameters such as the response of the structure and the loading conditions are often highly uncertain demand special consideration. This article presents the design of a special test rig and calculation methodology for the experimental determination of the overturning moment and net force generated by the NOVA Vertical Axis Wind Turbine using a field experimental setup. The design of the experimental model involves dealing with modelling uncertainties as loads in operation and therefore the response of the structure are largely unknown before testing has been carried out. The variability in the wind speed and direction also need to be accommodated for.
Residual stresses are often inevitably introduced into the material during the fabrication processes, such as welding, and are known to have significant effects on the subsequent fatigue crack growth behavior of welded structures. In this paper, the importance of welding sequence on residual stress distribution in engineering components has been reviewed. In addition, the findings available in the literature have been used to provide an accurate interpretation of the fatigue crack growth data on specimens extracted from the welded plates employed in offshore wind monopile structures. The results have been discussed in terms of the role of welding sequence in damage inspection and structural integrity assessment of offshore renewable energy structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.