Abstract3D microstructural datasets are commonly used to define the geometrical domains used in finite element modelling. This has proven a useful tool for understanding how complex material systems behave under applied stresses, temperatures and chemical conditions. However, 3D imaging of materials is challenging for a number of reasons, including limited field of view, low resolution and difficult sample preparation. Recently, a machine learning method, SliceGAN, was developed to statistically generate 3D microstructural datasets of arbitrary size using a single 2D input slice as training data. In this paper, we present the results from applying SliceGAN to 87 different microstructures, ranging from biological materials to high-strength steels. To demonstrate the accuracy of the synthetic volumes created by SliceGAN, we compare three microstructural properties between the 2D training data and 3D generations, which show good agreement. This new microstructure library both provides valuable 3D microstructures that can be used in models, and also demonstrates the broad applicability of the SliceGAN algorithm.
Modelling the impact of a material's mesostructure on device level performance typically requires access to 3D image data containing all the relevant information to define the geometry of the simulation domain. This image data must include sufficient contrast between phases to distinguish each material, be of high enough resolution to capture the key details, but also have a large enough field-of-view to be representative of the material in general. It is rarely possible to obtain data with all of these properties from a single imaging technique. In this paper, we present a method for combining information from pairs of distinct but complementary imaging techniques in order to accurately reconstruct the desired multi-phase, high resolution, representative, 3D images. Specifically, we use deep convolutional generative adversarial networks to implement super-resolution, style transfer and dimensionality expansion. To demonstrate the widespread applicability of this tool, two pairs of datasets are used to validate the quality of the volumes generated by fusing the information from paired imaging techniques. Three key mesostructural metrics are calculated in each case to show the accuracy of this method. Having confidence in the accuracy of our method, we then demonstrate its power by applying to a real data pair from a lithium ion battery electrode, where the required 3D high resolution image data is not available anywhere in the literature. We believe this approach is superior to previously reported statistical material reconstruction methods both in terms of its fidelity and ease of use. Furthermore, much of the data required to train this algorithm already exists in the literature, waiting to be combined. As such, our open-access code could precipitate a step change in the computational materials sciences by generating the hard to obtain high quality image volumes necessary to simulate behaviour at the mesoscale.
Materials characterization is fundamental to our understanding of lithium ion battery electrodes and their performance limitations. Advances in laboratory-based characterization techniques have yielded powerful insights into the structure–function relationship of electrodes, yet there is still far to go. Further improvements rely, in part, on gaining a deeper understanding of complex physical heterogeneities in the materials. However, practical limitations in characterization techniques inhibit our ability to combine data directly. For example, some characterization techniques are destructive, thus preventing additional analyses on the same region. Fortunately, artificial intelligence (AI) has shown great potential for achieving representative, 3D, multi-modal datasets by leveraging data collected from a range of techniques. In this Perspective, we give an overview of recent advances in lab-based characterization techniques for Li-ion electrodes. We then discuss how AI methods can combine and enhance these techniques, leading to substantial acceleration in our understanding of electrodes.
Modelling the impact of a material's mesostructure on device level performance typically requires access to 3D image data containing all the relevant information to define the geometry of the simulation domain. This image data must include sufficient contrast between phases, be of high enough resolution to capture the key details, but also have a large enough 3D field‐of‐view to be representative of the material in general. It is rarely possible to obtain data with all of these properties from a single imaging technique. In this paper, we present a method for combining information from pairs of distinct but complementary imaging techniques in order to accurately reconstruct the desired multi‐phase, high‐resolution, representative, 3D images. Specifically, the deep convolutional generative adversarial networks to implement super‐resolution, style‐transfer and dimensionality expansion. It is believed that this data‐driven approach is superior to previously reported statistical material reconstruction methods, both in terms of its fidelity and ease of use. Furthermore, much of the data required to train this algorithm already exists in the literature, waiting to be combined. As such, our open‐source code could precipitate a step change in the materials sciences by generating the desired high quality image volumes necessary to simulate behaviour at the mesoscale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.