Abstract. The finite-time Lyapunov exponent (FTLE) is a powerful Lagrangian concept widely used for describing large-scale flow patterns and transport phenomena. However, field experiments usually have modest scales. Therefore, it is necessary to bridge the gap between the concept of FTLE and field experiments. In this paper, two independent observations are discussed: (i) approximation of the local FTLE time series at a fixed location as a function of known distances between the destination (or source) points of released (or collected) particles and local velocity, and (ii) estimation of the distances between the destination (or source) points of the released (or collected) particles when consecutive release (or sampling) events are performed at a fixed location. These two observations lay the groundwork for an ansatz methodology that can practically assist in field experiments where consecutive samples are collected at a fixed location, and it is desirable to attribute source locations to the collected particles, and also in planning of optimal local sampling of passive particles for maximal diversity monitoring of atmospheric assemblages of microorganisms. In addition to deterministic flows, the more realistic case of unresolved turbulence and low-resolution flow data that yield probabilistic source (or destination) regions are studied. It is shown that, similar to deterministic flows, Lagrangian coherent structures (LCS) and local FTLE can describe the separation of probabilistic source (or destination) regions corresponding to consecutively collected (or released) particles.
Physical systems with time-varying internal couplings are abundant in nature. While the full governing equations of these systems are typically unknown due to insufficient understanding of their internal mechanisms, there is often interest in determining the leading element. Here, the leading element is defined as the sub-system with the largest coupling coefficient averaged over a selected time span. Previously, the Convergent Cross Mapping (CCM) method has been employed to determine causality and dominant component in weakly coupled systems with constant coupling coefficients. In this study, CCM is applied to a pair of coupled Lorenz systems with time-varying coupling coefficients, exhibiting switching between dominant sub-systems in different periods. Four sets of numerical experiments are carried out. The first three cases consist of different coupling coefficient schemes: I) Periodic–constant, II) Normal, and III) Mixed Normal/Non-normal. In case IV, numerical experiment of cases II and III are repeated with imposed temporal uncertainties as well as additive normal noise. Our results show that, through detecting directional interactions, CCM identifies the leading sub-system in all cases except when the average coupling coefficients are approximately equal, i.e., when the dominant sub-system is not well defined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.