The use of ultra-thin spacer layers above metal has become a popular approach to the enhancement of optical sensitivity and immobilization efficiency of label-free SPR sensors. At the same time, the giant optical anisotropy inherent to transition metal dichalcogenides may significantly affect characteristics of the studied sensors. Here, we present a systematic study of the optical sensitivity of an SPR biosensor platform with auxiliary layers of MoS2. By performing the analysis in a broad spectral range, we reveal the effect of exciton-driven dielectric response of MoS2 and its anisotropy on the sensitivity characteristics. The excitons are responsible for the decrease in the optimal thickness of MoS2. Furthermore, despite the anisotropy being at record height, it affects the sensitivity only slightly, although the effect becomes stronger in the near-infrared spectral range, where it may lead to considerable change in the optimal design of the biosensor.
Materials with high optical constants are of paramount importance for efficient light manipulation in nanophotonics applications. Recent advances in materials science have revealed that van der Waals (vdW) materials have large optical responses owing to strong in-plane covalent bonding and weak out-of-plane vdW interactions. However, the optical constants of vdW materials depend on numerous factors, e.g., synthesis and transfer method. Here, we demonstrate that in a broad spectral range (290–3300 nm) the refractive index n and the extinction coefficient k of Bi2Se3 are almost independent of synthesis technology, with only a ~10% difference in n and k between synthesis approaches, unlike other vdW materials, such as MoS2, which has a ~60% difference between synthesis approaches. As a practical demonstration, we showed, using the examples of biosensors and therapeutic nanoparticles, that this slight difference in optical constants results in reproducible efficiency in Bi2Se3-based photonic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.