As indoor positioning provides particular challenges due to the unavailability of GPS signals, various systems such as ultra-wideband (UWB), radio frequency identification (RFID), ultrasound, and wireless local area network (WLAN) have been proposed in recent years. Some of these technologies are currently being marketed and some are still being developed. UWB technology allows for higher precision while also reducing power consumption. Hence, the underground automation and localization systems can use this technology for more accuracy and robustness. This article discusses new robust UWB modules used for underground positioning and collision avoidance with regard to human safety in underground mining operations.
Accurate positioning information is a central step in the process of increasing automation and digitalization in the mining industry. Underground mine environments are prime examples for GNSS-denied environments that pose several additional challenges for the employed indoor positioning system (IPS). This work presents an ultra-wideband (UWB)–based system specifically tailored for underground mine environments. Initially, the UWB technology is reviewed and basic concepts of IPS are explained. Both software and hardware are described in detail, including positioning algorithms, electrical circuitry, and the mining-compatible enclosure. Finally, the results from field tests in an underground mine are presented and positioning performance and the influence of dilution of precision (DOP) on positioning results are empirically evaluated. The results show that the localization errors are mostly below 1 m. Individual zones of high localization errors are suspected to be caused by noise interference. Significant DOP influence due to the mining drift geometry can be confirmed. The system shows promising localization results for different mining applications, while influences negatively impacting the accuracy are presented as items for future research.
Suspended monorails are a common mode of transportation for materials and personnel in underground mines. The goal of the EU-funded project “Innovative High Efficiency Power System for Machines and Devices, Increasing the Level of Work Safety in Underground Mining Excavations (HEETII)” is to introduce a single-wire energy transmission system combined with a capacitive-coupling-based wireless transmission system to power the suspended tractor, along with a monitoring system that will monitor the energy network and additional environmental parameters of the mine. Additionally, the monitoring system acts as the wireless communication backbone, allowing for data transmission to surface headquarters, where the data are processed and logged in a central database. This enables operators to detect and take preemptive measures to prevent potential hazards in the mine, improving the overall efficiency of the energy transmission system. This paper describes the additional considerations required for electrical systems in underground mines with potentially explosive atmospheres, as well as the design of the energy transmission system and the monitoring system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.