Upgrading of biomass wastes to value-added materials has been incessantly pursued worldwide with diverse applications, especially deploying photocatalytic composites encompassing metal oxides with acidic and carbon compounds. Herein, the fabrication of a morphologically unique acidic catalyst encompassing a two-dimensional (2D) TiO2/g-C3N4 heterojunction feature is described for the generation of 5-hydroxymethylfurfural (5-HMF), which exploits the acidic/ionic liquid (IL) bifunctional photocatalysis under visible light. The structural integrity of the synthesized TiO2/g-C3N4/SO3H(IL) was corroborated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy–energy-dispersive spectroscopy (EDX–EDS), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), UV–vis, Tauc plots, transmission electron microscopy (TEM), and Brunauer–Emmett–Teller–Barrett–Joyner–Halenda (BET–BJH) analyses. Keeping environmental impact in mind, there are compelling advantages in the development of bio-derived pathways to access ILs from natural renewable resources. The outcomes of environmental assessments have revealed that the incorporation of TiO2 in g-C3N4 and ClSO3H can reduce the probability of recombination due to ionic charges present, therefore enhancing the photocatalytic activity via the transformation of cellulose and glucose to produce 5-HMF in higher yields, with the optimum conditions being reaction in water under a blue light-emitting diode (LED), at 100 °C, for 1–1.5 h. The main advantages of this production method include minimum number of synthetic steps as well as ample availability of and easy access to primary ingredients. While a significant volume of 5-HMF was produced under blue light-emitting diode (LED) radiation, the selectivity was drastically reduced in the dark. The salient attributes of the catalyst comprise stability in air, robustness, reusability, and its overall superior activity that is devoid of hazardous additives or agents. This inimitable method has uncovered a newer strategy for enhancing the photocatalytic attributes of deployed semiconducting materials for numerous photocatalytic functions while adhering to the tenets of environmental friendliness.
Purpose The purpose of this study is to introduce and evaluate the effect of critical success factors (CSF) in rescue operations in burning buildings by calculating the partial least squares structural equation modeling of PLS-SEM. Design/methodology/approach To do this, success criteria (SC) and CSF in the literature, which are related to the topic, articles, standards and relevant books, will be identified and then evaluated through the extended PLS-SEM model. Findings The results show that technological factors, awareness, resources and safety play an effective role in successful performance management in fire accidents. Research limitations/implications Appropriate use of these factors will promote incident management and decrease casualties and financial loss in the event of accidents. Originality/value Fire-fighting is of great importance, especially in tall and complex buildings. In recent years, extended studies have been carried out regarding fire accident management in terms of CSFs in the category of rescue and firefighting. However, attention has not been paid to the relation and severity of impact between SC and CSF by researchers in addition to the identification of the most important criteria during rescue operations.
The pre-project planning phase has a significant impact on the achievement of project objectives because during this stage, major decisions including involving contract strategies are made with a high degree of uncertainty. Studies show that the contract type can play a unique role in the achievement of project success. On the other hand, drilling projects can be considered as one of the most critical types of projects in the petroleum industry. In this research, a novel risk based best-worst method (risk-BWM) is proposed for solving the issue of selecting the best contract strategy. A three level methodology was designed; firstly, the risk breakdown structure (RBS) of drilling projects was created in four levels including one heading in level 0, eight main areas of risk in level 1, 34 sub-areas of risk in level 2, and finally, 217 risk items in level 3. Secondly and on the basis of BWM, the weights of risk factors were determined as the selection criteria and consequently the best and the worst criteria were specified. Finally, using pair-wise comparisons between six types of drilling prevalent in contracts, the most appropriate contract type was proposed. The contribution of this study is the development of a generic RBS for drilling projects and application of the risk factors for the first time for the selection of contract type using the BWM method, which has the potential of being adapted for other types of underground projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.