A heated SiC microtubular reactor has been used to decompose acetaldehyde and its isotopomers (CH(3)CDO, CD(3)CHO, and CD(3)CDO). The pyrolysis experiments are carried out by passing a dilute mixture of acetaldehyde (roughly 0.1%-1%) entrained in a stream of a buffer gas (either He or Ar) through a heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 50-200 Torr with the SiC tube wall temperature in the range 1200-1900 K. Characteristic residence times in the reactor are 50-200 μs after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. The reactor has been modified so that both pulsed and continuous modes can be studied, and results from both flow regimes are presented. Using various detection methods (Fourier transform infrared spectroscopy and both fixed wavelength and tunable synchrotron radiation photoionization mass spectrometry), a number of products formed at early pyrolysis times (roughly 100-200 μs) are identified: H, H(2), CH(3), CO, CH(2)=CHOH, HC≡CH, H(2)O, and CH(2)=C=O; trace quantities of other species are also observed in some of the experiments. Pyrolysis of rare isotopomers of acetaldehyde produces characteristic isotopic signatures in the reaction products, which offers insight into reaction mechanisms that occur in the reactor. In particular, while the principal unimolecular processes appear to be radical decomposition CH(3)CHO (+M) → CH(3) + H + CO and isomerization of acetaldehyde to vinyl alcohol, it appears that the CH(2)CO and HCCH are formed (perhaps exclusively) by bimolecular reactions, especially those involving hydrogen atom attacks.
The aromatic indene molecule (C 9 H 8 ) together with its acyclic isomers (phenylallene, 1-phenyl-1-propyne, and 3-phenyl-1-propyne) were formed via a 'directed synthesis' in situ utilizing a high temperature chemical reactor under combustion-like conditions (300 Torr, 1,200-1,500 K) through the reactions of the phenyl radical (C 6 H 5 ) with propyne (CH 3 CCH) and allene (H 2 CCCH 2 ). The isomer distributions were probed utilizing tunable vacuum ultraviolet (VUV) radiation from the Advanced Light Source by recording the photoionization efficiency (PIE) curves at mass-to-charge of m/z = 116 (C 9 H 8 + ) of the products in a supersonic expansion for both the phenyl-allene and phenyl-propyne systems; branching ratios were derived by fitting the recorded PIE curves with a linear combination of the PIE curves of the individual C 9 H 8 isomers. Our data suggest that under our experimental conditions, the formation of the aromatic indene molecule via the reaction of the phenyl radical with allene is facile and enhanced compared to the phenyl -propyne system by a factor of about seven. Reaction mechanisms and branching ratios are explained in terms of new electronic structure calculations.Our newly developed high temperature chemical reactor presents a versatile approach to study the formation of combustion-relevant polycyclic aromatic hydrocarbons (PAHs) under welldefined and controlled conditions.
Stimulus characteristics of the mouse's visual field differ above and below the skyline. Here, we show for the first time that retinal ganglion cells (RGCs), the output neurons of the retina, gradually change their functional properties along the ventral-dorsal axis to allow better representation of the different stimulus characteristics. We conducted two-photon targeted recordings of transient-Offα-RGCs and found that they gradually became more sustained along the ventral-dorsal axis, revealing >5-fold-longer duration responses in the dorsal retina. Using voltage-clamp recordings, pharmacology, and genetic manipulation, we demonstrated that the primary rod pathway underlies this variance. Our findings challenge the current belief that RGCs of the same subtype exhibit the same light responses, regardless of retinal location, and suggest that networks underlying RGC responses may change with retinal location to enable optimized sampling of the visual image.
A silicon carbide microtubular reactor has been used to measure branching ratios in the thermal decomposition of furan, C4H4O. The pyrolysis experiments are carried out by passing a dilute mixture of furan (roughly 0.01 %) entrained in a stream of helium through the heated reactor. The SiC reactor (0.6 mm i.d, 2 mm o.d., 2.5 cm long) operates with continuous flow. Experiments were performed with a reactor inlet pressure of 100-300 Torr and a "chemical temperature" within the reactor of approximately 1100-1400 K; characteristic residence times in the reactor are 100-200 µsec. Tunable synchrotron radiation photoionization mass spectrometry is used to monitor the products, measure the branching ratio of the two carbenes as well as the ratio of [HCCCH2]/[HC≡CCH3]. The results of our experiments clearly demonstrate a preference for the decomposition channel through a β-carbene. At temperatures of 1100-1200 K, only HC≡CCH3 is produced. As the temperature rises to 1300-1400 K, roughly 10 % of the flux through the β-carbene channel goes to HCCCH2 radicals.
We have used a heated 2 cm × 1 mm SiC microtubular (μtubular) reactor to decompose acetaldehyde: CH3CHO + Δ → products. Thermal decomposition is followed at pressures of 75–150 Torr and at temperatures up to 1675 K, conditions that correspond to residence times of roughly 50–100 μs in the μtubular reactor. The acetaldehyde decomposition products are identified by two independent techniques: vacuum ultraviolet photoionization mass spectroscopy (PIMS) and infrared (IR) absorption spectroscopy after isolation in a cryogenic matrix. Besides CH3CHO, we have studied three isotopologues, CH3CDO, CD3CHO, and CD3CDO. We have identified the thermal decomposition products CH3 (PIMS), CO (IR, PIMS), H (PIMS), H2 (PIMS), CH2CO (IR, PIMS), CH2=CHOH (IR, PIMS), H2O (IR, PIMS), and HC≡CH (IR, PIMS). Plausible evidence has been found to support the idea that there are at least three different thermal decomposition pathways for CH3CHO; namely, radical decomposition: CH3CHO + Δ → CH3 + [HCO] → CH3 + H + CO; elimination: CH3CHO + Δ → H2 + CH2=C=O; isomerization/elimination: CH3CHO + Δ → [CH2=CH–OH] → HC≡CH + H2O. An interesting result is that both PIMS and IR spectroscopy show compelling evidence for the participation of vinylidene, CH2=C:, as an intermediate in the decomposition of vinyl alcohol: CH2=CH–OH + Δ → [CH2=C:] + H2O → HC≡CH + H2O.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.