CoFe2O4 is a promising catalytic material for many chemical reactions. We used ab initio molecular dynamic simulations to study the structure and reactivity of the A- and B-terminations of the low-index CoFe2O4(001) surfaces to water adsorption at room temperature. Upon adsorption, water partly dissociates on both termination with a higher dissociation degree on the A-termination (30% versus 19%). The 2-fold coordinated Fe3+(tet) in the tetrahedral voids and the 5-fold coordinated Fe3+(oct) in the octahedral voids are the main active sites for water dissociation on the A- and B-termination, respectively. Molecular water, hydroxydes, and surface OH resulting from proton transfer to surface oxygens are present on the surfaces. Both water-free surface terminations undergo reconstruction. The outermost Fe3+(tet) on the A-termination and B-termination move towards the nearby unoccupied octahedral voids. In the presence of a thin film of 32 water molecules, the reconstructions are partially and completely lifted on the A- and B-termination, respectively.
The interaction of 2-propanol with Co3O4(001) was studied by vibrational sum fre-quency spectroscopy (vSFS) and by ab initio molecular dynamics (AIMD) simulations of 2-propanol dissolved in a water film to gain insight at the molecular level into the pathways of catalytic oxidation. The experimental study has been performed under near ambient condition, where the presence of water vapor is unavoidable, resulting in a water film on the sample and thereby allowing us to mimic the solution-water interface. Both experiment and theory conclude that 2-propanol adsorbs molecularly. The lack of dissociation is attributed to the adsorption geometry of 2-propanol in which the O-H bond does not point towards the surface. Furthermore, the copresent water not only competitively adsorbs on the surface but also inhibits 2-propanol deprotonation. The calculations reveal that the presence of water deactivates the lattice oxygen, thereby reducing the surface activity. This finding sheds light on the multifaceted role of water at the interface for the electrochemical oxidation of 2-propanol in aqueous solution as recently reported. At higher temperatures 2-propanol remains molecularly adsorbedon Co3O4(001) until it desorbs with increasing surface temperature.
The interaction of 2-propanol with Co3O4(001) was studied by vibrational sum frequency spectroscopy and ab initio molecular dynamics simulations of 2-propanol dissolved in a water film to gain an insight, at the molecular level, into the pathways of catalytic oxidation. The experimental study has been performed under near ambient conditions, where the presence of water vapor is unavoidable, resulting in a water film on the sample and, thereby, allowing us to mimic the solution–water interface. Both experiment and theory conclude that 2-propanol adsorbs molecularly. The lack of dissociation is attributed to the adsorption geometry of 2-propanol in which the O–H bond does not point toward the surface. Furthermore, the copresent water not only competitively adsorbs on the surface but also inhibits 2-propanol deprotonation. The calculations reveal that the presence of water deactivates the lattice oxygen, thereby reducing the surface activity. This finding sheds light on the multifaceted role of water at the interface for the electrochemical oxidation of 2-propanol in aqueous solution as recently reported [Falk et al., ChemCatChem 13, 2942–2951 (2021)]. At higher temperatures, 2-propanol remains molecularly adsorbed on Co3O4(001) until it desorbs with increasing surface temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.