IntroductionPatients with diabetes and prediabetes are at increased risk of dyslipidemia and cardiovascular disease. To reduce this risk, statins and additional therapies may be considered. Omega-3 fatty acids offer an option to reduce triglycerides (TG) and potentially improve other lipid parameters, although products that contain docosahexaenoic acid (DHA) may increase low-density lipoprotein cholesterol (LDL-C) while eicosapentaenoic acid (EPA) does not. Prescription formulations include omega-3-acid mixtures (combination of predominantly EPA and DHA), and icosapent ethyl (high-purity prescription form of EPA ethyl ester); prescription omega-3 products are indicated as an adjunct to diet to reduce TGs in adult patients with severe hypertriglyceridemia at a dose of 4 g/day.MethodsThis was a retrospective analysis of records from a private endocrinology practice of patients who received omega-3-acid ethyl esters (OM3EE) (4 g/day) and were subsequently switched to icosapent ethyl (IPE; 4 g/day) due to the potential of OM3EE to raise LDL-C and/or cause gastrointestinal upset. Patient records were analyzed for LDL-C, TG, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and non-HDL-C measured before and after the switch to IPE.ResultsThe records of ten patients met the criteria for this analysis and were included. All patients had taken OM3EE for ≥1 year prior to their last lipid measurement before switching to IPE, and all had been taking IPE for >3 months at the time of their subsequent lipid measurement. Nine of the ten patients were on concomitant statin therapy throughout. Reductions in LDL-C, TC, and non-HDL-C were observed in eight patients, reductions or no changes in TG were observed in eight patients, and increases or no changes in HDL-C were observed in eight patients. No gastrointestinal adverse events were observed.ConclusionIn most patients with prediabetes or diabetes who switched from OM3EE to IPE, LDL-C and other lipid parameters improved. IPE was well tolerated.
Type 2 diabetes mellitus (T2DM) and metabolic syndrome contribute to hypertriglyceridemia, which may increase residual risk of cardiovascular disease in patients with elevated triglyceride (TG) levels despite optimal low-density lipoprotein cholesterol (LDL-C) levels with statin therapy. Prescription products containing the long-chain omega-3 fatty acids (OM3FAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are an effective strategy for reducing TG levels. This article provides an overview of prescription OM3FAs, including relevant clinical data in patients with T2DM and/or metabolic syndrome. Prescription OM3FAs contain either combinations of DHA and EPA (omega-3-acid ethyl esters, omega-3-carboxylic acids, omega-3-acid ethyl esters A) or EPA alone (icosapent ethyl). These products are well tolerated and can be used safely with statins. Randomized controlled trials have demonstrated that all prescription OM3FAs produce statistically significant reductions in TG levels compared with placebo; however, differential effects on LDL-C levels have been reported. Products containing DHA may increase LDL-C levels, whereas the EPA-only product did not increase LDL-C levels compared with placebo. Because increases in LDL-C levels may be unwanted in patients with T2DM and/or dyslipidemia, the EPA-only product should not be replaced with products containing DHA. Available data on the effects of OM3FAs in patients with diabetes and/or metabolic syndrome support that these products can be used safely in patients with T2DM and have beneficial effects on atherogenic parameters; in particular, the EPA-only prescription product significantly reduced TG, non-high-density lipoprotein cholesterol, Apo B, remnant lipoprotein cholesterol, and high-sensitivity CRP levels without increasing LDL-C levels compared with placebo. Ongoing studies of the effects of prescription OM3FAs on cardiovascular outcomes will help determine whether these products will emerge as effective add-on options to statin therapy for reduction of residual cardiovascular disease risk.
Non-alcoholic fatty liver disease (NAFLD) is linked to type 2 diabetes mellitus (T2DM), obesity, and insulin resistance. The Rho/ROCK pathway had been involved in the pathophysiology of diabetic complications. This study was designed to assess the possible protective impacts of the Rho/Rho-associated coiled-coil containing protein kinase (Rho/ROCK) inhibitor fasudil against NAFLD in T2DM rats trying to elucidate the underlying mechanisms. Animals were assigned into control rats, non-treated diabetic rats with NAFLD, and diabetic rats with NAFLD that received fasudil treatment (10 mg/kg per day) for 6 weeks. The anthropometric measures and biochemical analyses were performed to assess metabolic and liver function changes. The inflammatory and oxidative stress markers and the histopathology of rat liver tissues were also investigated. Groups with T2DM showed increased body weight, serum glucose, and insulin resistance. They exhibited disturbed lipid profile, enhancement of inflammatory cytokines, and deterioration of liver function. Fasudil administration reduced body weight, insulin resistance, and raised liver enzymes. It improved the disturbed lipid profile and attenuated liver inflammation. Moreover, it slowed down the progression of high fat diet (HFD)-induced liver injury and reduced the caspase-3 expression. The present study demonstrated beneficial amelioration effect of fasudil on NAFLD in T2DM. The mechanisms underlying these impacts are improving dyslipidemia, attenuating oxidative stress, downregulated inflammation, improving mitochondrial architecture, and inhibiting apoptosis.
To evaluate the effect of canagliflozin and metformin on the estrous cycle and hormonal derangement of letrozole induced polycystic ovarian syndrome (PCOS) in Sprague Dawly rats. METHODS:Thirty six female adult non-pregnant Sprague Dawly rats were divided into six groups and all, except normal control (A), were treated with letrozole 1mg/kg daily for 21 days. Treatment was started to all rats except normal control (group-A) and disease control (group-B). Canagliflozin 10 mg/kg, metformin 100 mg/kg and their combinations in high and low doses were given daily to rats of groups-C (canagliflozin-alone), group-D (metforminalone), group-E (high dose combination) and group-F (low dose combination) respectively. Vaginal smears were taken daily, to observe the estrous cycle, till th nd th the 48 day of study. Blood samples were collected on the 22 and 48 day for hormonal assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.