This article reviews the recent progress towards achieving carbon-based thermoelectric materials. A wide range of experimental and computational studies on carbon allotropes and composites is covered in this review paper. Specifically, we discuss the strategies for engineering graphene, graphene nanoribbon, graphene nanomesh, graphene nanowiggle, carbon nanotube (CNT), fullerene, graphyne, and carbon quantum dot for better thermoelectric performance. Moreover, we discuss the most recent advances in CNT/graphene-polymer composites and the related challenges and solutions. We also highlight the important charge and heat transfer mechanisms in carbon-based materials and state-of-the-art strategies for enhancing thermoelectric performance. Finally, we provide an outlook towards the future of carbon-based thermoelectrics.
Nanocrystalline and nanotwinned metals exhibit ultrahigh strength but suffer from low ductility due to the absence of the strain hardening effect. Here, we report sustained strong strain hardening up to 20% compressive strain in a melt-quenched nanocrystalline Cu structure, which contains numerous fivefold twins, stacking faults, and twin boundaries. Our molecular dynamics simulations reveal that the strong strain hardening results from the synergistic effect of constant nucleation and impedance of dislocations, restricted twin boundary migration, and abundant dislocation reactions in fivefold twin networks. Specifically, we find that fivefold twins both nucleate and impede dislocations, and the migration of fivefold twin boundary is restricted by the core of fivefold twins. Moreover, we observe a new migration mechanism, in which fivefold twin boundary migrates by two atomic planes directly, enabled by the gliding of two different Shockley partial dislocations in the opposite directions. Finally, dislocation transmission, which is adverse to strain hardening, occurs very scarcely in fivefold twins. This is caused by the large misfit strains in fivefold twins and abundant immobile dislocations generated by frequent dislocation reactions in fivefold twin networks. This work reveals the advantage of fivefold twins over nanotwins to overcome the strength-ductility trade-off.
Twinning is a major mechanism of plastic deformation in hexagonal close-packed (hcp) structures. However, a mechanistic understanding of twin nucleation and growth has yet to be established. This paper reviews the recent progress in the understanding of twinning in hcp materials—particularly the newly discovered phase transformation-mediated twinning mechanisms—in terms of crystallographical analysis, theoretical mechanics calculations, and numerical simulations. Moreover, the relationship between phase transformation-mediated twinning mechanisms and twinning dislocations are presented, forming a unified understanding of deformation twinning. Finally, this paper also reviews the recent studies on transformation twins that are formed in hcp martensite microstructures after various phase transformations, highlighting the critical role of the mechanical loading in engineering a transformation twin microstructure.
ω -titanium (Ti) is a high-pressure phase that is conventionally perceived to be brittle and nondeformable, although direct investigations of its deformation process remain scarce. In this work, we perform molecular dynamics simulations to study the deformation process of ω-Ti with initial defects and find that stress-induced ω→α martensitic transformation can cause extensive plasticity in ω-Ti under various loading directions. Moreover, for the first time, we demonstrate that four types of transformation twins—{112¯1}, {112¯2}, {101¯2}, and {101¯1} twins—can be formed through the ω→α martensitic phase transformation. This work advances the understanding of plastic deformation in ω-Ti and unveils the essential role of the metastable ω-phase in the formation of transformation twins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.