In the present article, hybrid lattice Boltzmann-immersed boundary method is utilized to simulate two-dimensional incompressible viscous flow involving flexible immersed red blood cell (RBC) in a microchannel. The main focus of the present research is to study motion and deformation of both healthy and sick RBCs in a vessel with different sizes of stenosis. The presented computational results consent reasonably well with the available data in the literature. Two different channels i.e. a simple and a constricted channel are investigated in the present manuscript. The results show that the RBC transfer and deform without any lift force and rotation induced when it is located on the symmetry axis of the microchannel. However, when the RBC is located off the symmetry axis, the pressure difference produced in the flow around the RBC would apply lift forces on them and expel them towards the center of the channel. The healthy RBC always shows more deformation related to the sick one along the channel. Another important result of the present research is that for the ratio of [Formula: see text] a sick RBC cannot pass the stenosis, and it reasons serious difficulties for body. The present results have been compared with the available experimental and numerical results which show good agreements.
Purpose
Using the computational fluid dynamics (CFD) technique, this paper aims to investigate the influence of key parameters such as throat diameter; the suction ratio on the flow field behaviors such as Mach number; pressure; and temperature.
Design/methodology/approach
To investigate the effect of throat diameter, it is simulated for 4, 6, 8 and 10 mm as throat diameters. The governing equations have been solved by standard code of Fluent Software together with a compressible 2 D symmetric and turbulence model with the standard k–ε model. First, the influence of the throat diameter is investigated by keeping the inlet mass flow constant.
Findings
The results show that a place of shock wave creation is changed by changing the throat diameter. The obtained results illustrate that the maximum amount of Mach number is dependent on the throat diameter. It is obtained from the results that for smaller throats higher Mach numbers can be obtained. Therefore, for mixing purposes smaller throats and for exhausting bigger throats seems to be appropriate.
Originality/value
The obtained numerical results are compared to the existing experimental ones which show good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.