Learning interpretable and human-controllable representations that uncover factors of variation in data remains an ongoing key challenge in representation learning. We investigate learning group-disentangled representations for groups of factors with weak supervision. Existing techniques to address this challenge merely constrain the approximate posterior by averaging over observations of a shared group. As a result, observations with a common set of variations are encoded to distinct latent representations, reducing their capacity to disentangle and generalize to downstream tasks. In contrast to previous works, we propose GroupVAE, a simple yet effective Kullback-Leibler (KL) divergence-based regularization across shared latent representations to enforce consistent and disentangled representations. We conduct a thorough evaluation and demonstrate that our GroupVAE significantly improves group disentanglement. Further, we demonstrate that learning group-disentangled representations improve upon downstream tasks, including fair classification and 3D shape-related tasks such as reconstruction, classification, and transfer learning, and is competitive to supervised methods.
Boundary Representations (B-Reps) are the industry standard in 3D Computer Aided Design/Manufacturing (CAD/CAM) and industrial design due to their fidelity in representing stylistic details. However, they have been ignored in the 3D style research. Existing 3D style metrics typically operate on meshes or pointclouds, and fail to account for end-user subjectivity by adopting fixed definitions of style, either through crowd-sourcing for style labels or hand-crafted features. We propose UVStyle-Net, a style similarity measure for B-Reps that leverages the style signals in the second order statistics of the activations in a pre-trained (unsupervised) 3D encoder, and learns their relative importance to a subjective end-user through few-shot learning. Our approach differs from all existing data-driven 3D style methods since it may be used in completely unsupervised settings, which is desirable given the lack of publicly available labelled B-Rep datasets. More importantly, the fewshot learning accounts for the inherent subjectivity associated with style. We show quantitatively that our proposed method with B-Reps is able to capture stronger style signals than alternative methods on meshes and pointclouds despite its significantly greater computational efficiency. We also show it is able to generate meaningful style gradients with respect to the input shape, and that few-shot learning with as few as two positive examples selected by an enduser is sufficient to significantly improve the style measure. Finally, we demonstrate its efficacy on a large unlabeled public dataset of CAD models. Source code and data will be released in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.