Sulfur is both crucial to life and a potential threat to health. While colonic sulfur metabolism mediated by eukaryotic cells is relatively well studied, much less is known about sulfur metabolism within gastrointestinal microbes. Sulfated compounds in the colon are either of inorganic (e.g., sulfates, sulfites) or organic (e.g., dietary amino acids and host mucins) origin. The most extensively studied of the microbes involved in colonic sulfur metabolism are the sulfate-reducing bacteria (SRB), which are common colonic inhabitants. Many other microbial pathways are likely to shape colonic sulfur metabolism as well as the composition and availability of sulfated compounds, and these interactions need to be examined in more detail. Hydrogen sulfide is the sulfur derivative that has attracted the most attention in the context of colonic health, and the extent to which it is detrimental or beneficial remains in debate. Several lines of evidence point to SRB or exogenous hydrogen sulfide as potential players in the etiology of intestinal disorders, inflammatory bowel diseases (IBDs) and colorectal cancer in particular. Generation of hydrogen sulfide via pathways other than dissimilatory sulfate reduction may be as, or more, important than those involving the SRB. We suggest here that a novel axis of research is to assess the effects of hydrogen sulfide in shaping colonic microbiome structure. Clearly, in-depth characterization of the microbial pathways involved in colonic sulfur metabolism is necessary for a better understanding of its contribution to colonic disorders and development of therapeutic strategies.
An experiment was conducted to evaluate the effects of amaranth grain in pellet diet on performance, intestinal morphology of jejunum, and selected blood variables of broilers. A total of 400 seven-day-old Ross 308 male broilers were allocated to 4 treatments with 5 replicates of 20 birds in a completely randomized design. Experimental treatments were included 4 levels of amaranth grain (0% (control), 2%, 4%, and 6%) in the isonitrogenous and isocaloric pellet diets. During the experiment, body weight (BW) and feed intake (FI) were recorded weekly and average daily gain (ADG), feed conversion ratio (FCR), as well as European broiler index (EBI), were calculated. On day 42, blood sera and jejunal tissue samples were obtained from 6 birds per replicate to evaluate morphological variables including villus height, villus width, and crypt depth, as well as selected blood variables. Although intestinal morphology and average daily feed intake (ADFI) were not influenced by experimental treatments, birds receiving 2% amaranth grain showed higher BW, ADG, and EBI compared to the other treatments (p<0.05). Chickens fed with diets including various levels of amaranth grain showed the decreased low-density lipoprotein (LDL) and cholesterol concentrations in the blood sera and reduced relative weight of abdominal fat compared to the control (p<0.05). Dietary addition of amaranth grain up to the level of 2% could improve the performance of broiler chickens, decreased blood cholesterol and LDL levels, and relative weight of abdominal fat which may have healthful effects on the birds and broiler-meat-consumers.
This experiment was conducted to compare the effects of four commercial herbal additives (Noviherb ® , Bioessence ® , Biostrong ® , and Novigrow ® ), and a commercial antibiotic (virginiamycin) on growth performance, carcass yield, visceral organs weight, thyroid hormones, and humoral immune responses of broiler chickens. Nine hundred day-old Ross 308 male broiler chicks were reared in littercovered floor cages and distributed into five experimental groups with six replicates of 30 birds. Five dietary treatments tested were diets supplemented with Noviherb ® , Bioessence ® , Biostrong ® (each of them 100g/ton of diet), Novigrow ® (1000g/ton of diet), and virginiamycin (100g/ton of diet) as a positive control. Feed intake, body weight, mortality, feed conversion ratio, European broiler index, and feed cost per kilogram of body weight were measured during the experiment. Antibody titers against sheep red blood cells (SRBC), immunoglobulin G, immunoglobulin M, and plasma concentrations of thyroxine (T4) and triiodothyronine (T3) were evaluated at the age of 42 days. Then, four birds per replicate were killed to determine the relative weight of carcass and organs. The GLM procedures of SAS software and Duncan's multiple range test were applied to analyze data in a completely randomized design with five treatments and six replicates of 30 birds per each. The effects of herbal additives on productive traits feed cost per kilogram of body weight and relative weight of organs were not significant in comparison with antibiotic treatment. Dietary inclusion of Noviherb ® , Biostrong ® , and Novigrow ® significantly decreased feed cost per kilogram of carcass compared with Bioessence ® or antibiotic treatments (p<0.05).The titers of IgG in Noviherb ® and virginiamycin were significantly higher (p<0.05) than in Biostrong ® and Novigrow ® fed groups. The plasma concentration of triiodothyronine was significantly decreased (p<0.05) by dietary inclusion of Noviherb ® and Novigrow ® compared to the antibiotic. In conclusion, all the evaluated herbal additives could act as a substitute for the growth-promoting antibiotic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.