A novel all-atom, dissociative, and polarizable force field for water is presented. The force field is parameterized based on forces, stresses, and energies obtained form ab initio calculations of liquid water at ambient conditions. The accuracy of the force field is tested by calculating structural and dynamical properties of liquid water and the energetics of small water clusters. The transferability of the force field to dissociated states is studied by considering the solvation of a proton and the ionization of water at extreme conditions of pressure and temperature. In the case of the solvated proton, the force field properly describes the presence of both Eigen and Zundel configurations. In the case of the pressure-induced ice VIII/ice X transition and the temperature-induced transition to a superionic phase, the force field is found to describe accurately the proton symmetrization and the melting of the proton sublattice, respectively.
Homogalacturonans (HGs) are polysaccharide copolymers of galacturonic acid and its methylesterified counterpart. The inter- and intramolecular distributions of the methylesterifed residues are vital behavior-determining characteristics of a sample's structure, and much experimental effort has been directed to their measurement. While many techniques are able to measure the sample-averaged degree of methylesterification (DM), the measurement of inter- and intramolecular charge distributions are challenging. Here, molecular dynamics (MD) simulations are used to calculate the electrophoretic mobilities of HGs that have different amounts and distributions of charges placed along the backbone. The simulations are shown to capture experimental results well, even for low-DM samples that possess high charge densities. In addition, they illuminate the role that local counterion condensation can play in the determination of the electrophoretic mobility of heterogeneous blocky polyelectrolytes that cannot be adequately described by a single chain-averaged charge spacing.
Using the transfer matrix method, we study the conductance of the chiral particles through a monolayer graphene superlattice with long-range correlated disorder distributed on the potential of the barriers. Even though the transmission of the particles through graphene superlattice with white noise potentials is suppressed, the transmission is revived in a wide range of angles when the potential heights are long-range correlated with a power spectrum S(k) ∼ 1/k β . As a result, the conductance increases with increasing the correlation exponent values gives rise a metallic phase. We obtain a phase transition diagram in which a critical correlation exponent depends strongly on disorder strength and slightly on the energy of the incident particles. The phase transition, on the other hand, appears in all ranges of the energy from propagating to evanescent mode regimes.
Evidence is presented that the polysaccharide rhamnogalacturonan I (RGI) can be biosynthesized in remarkably organized branched configurations and surprisingly long versions and can self-assemble into a plethora of structures. AFM imaging has been applied to study the outer mucilage obtained from wild-type (WT) and mutant (bxl1-3 and cesa5-1) Arabidopsis thaliana seeds. For WT mucilage, ordered, multichain structures of the polysaccharide RGI were observed, with a helical twist visible in favorable circumstances. Molecular dynamics (MD) simulations demonstrated the stability of several possible multichain complexes and the possibility of twisted fibril formation. For bxl1-3 seeds, the imaged polymers clearly showed the presence of side chains. These were surprisingly regular and well organized with an average length of ∼100 nm and a spacing of ∼50 nm. The heights of the side chains imaged were suggestive of single polysaccharide chains, while the backbone was on average 4 times this height and showed regular height variations along its length consistent with models of multichain fibrils examined in MD. Finally, in mucilage extracts from cesa5-1 seeds, a minor population of chains in excess of 30 μm long was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.