A compact, circular UWB fractal antenna with triple reconfigurable notch rejection bands is proposed. It rejects the crowded frequency bands WiMAX, WLAN and X band interferences produced in UWB communication systems. The proposed fractal structure consists of a basic circular patch with circular fractal iterations. By employing this new structure of fractals, the overall size of antenna is reduced 53% to 21x25 mm, in comparison with traditional circular monopole antenna. The implemented antenna operates at 3.1-10 GHz. Reconfigurability is realized by designing slots and split ring resonators in desired frequencies with the attached PIN diodes. WLAN band rejection was realized by creating a pair of optimized L-shaped slots in the ground plane. By etching a split ring resonator and a U-shaped slot, X and WiMAX bands were also rejected. Furthermore, by attaching diodes to aforementioned slots and designating the diodes on/off, different bands can be included or rejected. In time domain, the antenna properties are evaluated by a figure of merit called fidelity factor. Finally, the antenna properties are measured in anechoic chamber and the results agrees with simulation findings.
In this paper, a new multiband fractal frequency selective surface (MF-FSS) is proposed. The work presents a new fractal design methodology for FSSs with Swastika fractal patch elements. The proposed MF-FSS includes periodic arrays of metallic patches, printed on a single layer substrate. The structure parametric analysis is carried out in terms of fractal iterations, geometry elements, and unit-cell size. The simple controllable feature of the proposed structure lets us tune the given parameters of FSS geometry to achieve adjustable bandstop filter. The fractal geometry allows us to design compact structures (CP = 54%) that behave like dual-polarized bandstop filters. The designed structure is validated by means of an excellent agreement between the simulation and measurement results. Also, results show the proposed structure presents the most desirable features like fractal compactness, multiband response, dual polarization, excellent angular stability, and controllability. This work presents a fundamental structure that can be applied into the more complex and sophisticated designs in future.
This article presents a compact multiband, multimode frequency reconfigurable antenna for heterogeneous wireless applications. The antenna features a simple geometrical configuration consisting of a triangular monopole antenna loaded with three stubs. By adjusting the biasing condition of the three embedded diodes, six different operation modes are achieved that are wideband, single narrow band, dual-band, and triband operational modes. The proposed antenna offers an acceptable gain, omnidirectional radiation pattern, and high efficiency. The antenna prototype was fabricated and tested to validate its performance. The strong agreement between simulated and measured results confirms the suitability of the proposed antenna for modern wireless applications, requiring multiband and multimode compact antennas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.