Patients with epidermodysplasia verruciformis (EV) and biallelic null mutations of (encoding EVER1) or (EVER2) are selectively prone to disseminated skin lesions due to keratinocyte-tropic human β-papillomaviruses (β-HPVs), which lack E5 and E8. We describe EV patients homozygous for null mutations of the gene encoding calcium- and integrin-binding protein-1 (CIB1). CIB1 is strongly expressed in the skin and cultured keratinocytes of controls but not in those of patients. CIB1 forms a complex with EVER1 and EVER2, and CIB1 proteins are not expressed in EVER1- or EVER2-deficient cells. The known functions of EVER1 and EVER2 in human keratinocytes are not dependent on CIB1, and CIB1 deficiency does not impair keratinocyte adhesion or migration. In keratinocytes, the CIB1 protein interacts with the HPV E5 and E8 proteins encoded by α-HPV16 and γ-HPV4, respectively, suggesting that this protein acts as a restriction factor against HPVs. Collectively, these findings suggest that the disruption of CIB1-EVER1-EVER2-dependent keratinocyte-intrinsic immunity underlies the selective susceptibility to β-HPVs of EV patients.
Summary Background Recessive forms of congenital ichthyosis encompass a group of rare inherited disorders of keratinization leading to dry, scaly skin. So far, 13 genes have been implicated, but there is a paucity of data on genotype–phenotype correlation in some populations. Objectives We compiled an English cohort of 146 individuals with recessive ichthyosis and assessed genotype–phenotype correlation. Methods Deep phenotyping was undertaken by history‐taking and clinical examination. DNA was screened for mutations using a next‐generation sequencing ichthyosis gene panel and Sanger sequencing. Results Cases were recruited from 13 National Health Service sites in England, with 65% of patients aged < 16 years at enrolment. Pathogenic biallelic mutations were found in 83% of cases, with the candidate gene spread as follows: TGM1 29%, NIPAL4 12%, ABCA12 12%, ALOX12B 9%, ALOXE3 7%, SLC27A4 5%, CERS3 3%, CYP4F22 3%, PNPLA1 2%, SDR9C7 1%. Clinically, a new sign, an anteriorly overfolded ear at birth, was noted in 43% of patients with ALOX12B mutations. The need for intensive care stay (P = 0·004), and hand deformities (P < 0·001), were associated with ABCA12 mutations. Self‐improving collodion ichthyosis occurred in 8% of the cases (mostly TGM1 and ALOX12B mutations) but could not be predicted precisely from neonatal phenotype or genotype. Conclusions These data refine genotype–phenotype correlation for recessive forms of ichthyosis in England, demonstrating the spectrum of disease features and comorbidities, as well as the gene pathologies therein. Collectively, the data from these patients provide a valuable resource for further clinical assessment, improving clinical care and the possibility of future stratified management. What's already known about this topic? Recessive forms of ichthyosis are rare but often difficult to diagnose. Mutations in 13 genes are known to cause recessive forms of ichthyosis: ABCA12, ALOX12B, ALOXE3, CERS3, CYP4F22, LIPN, NIPAL4, PNPLA1, SDR9C7, SLC27A4, SULT2B1, ST14 and TGM1. Some phenotypic features may associate with certain gene mutations, but paradigms for genotype–phenotype correlation need refining. What does this study add? The genotypic spectrum of recessive ichthyosis in England (based on 146 cases) comprises TGM1 (29%), NIPAL4 (12%), ABCA12 (12%), ALOX12B (9%), ALOXE3 (7%), SLC27A4 (5%), CERS3 (3%), CYP4F22 (3%), PNPLA1 (2%) and SDR9C7 (1%). New or particular phenotypic clues were defined for mutations in ALOX12B, ABCA12, CYP4F22, NIPAL4, SDR9C7 and TGM1, either in neonates or in later life, which allow for greater diagnostic precision. In around 17% of cases, the molecular basis of recessive ichthyosis remains unknown.
Mendelian disorders with cutaneous manifestations comprise a genotypically heterogeneous group of over 1,000 diseases, and in most of them mutant genes have been identified. Mutation detection approaches in these diseases have largely focused on DNA analysis by next-generation sequencing techniques, including genetargeted sequencing panels as well as whole-exome and whole-genome sequencing. Genome-wide homozygosity mapping (HM), based on DNA polymorphism, has also assisted in the identification of candidate genes in families with consanguinity. However, specific pathogenic variants have not been disclosed in many individual patients when analyzed by next-generation sequencing, and in particular, DNA-based analysis failed to identify many of the mutations impacting on splicing or gene expression. Whole-transcriptome sequencing by RNA sequencing (RNA-Seq), with appropriate bioinformatics, provides a robust tool to identify additional mutations to facilitate genetic diagnosis in genodermatoses. RNA-Seq can be used for variant calling and HM similar to DNAbased approaches, but it also allows for the identification of mutations that result in aberrant transcriptome expression, as displayed by heatmap analysis, and altered splicing patterns of RNA, as visualized by Sashimi plots. Thus, clinical RNA-Seq extends molecular diagnostics of rare genodermatoses, and it could provide a reliable first-tier diagnostic approach to extend mutation databases in patients with heritable skin diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.