Multiple studies have considered the nanosilica-cationic starch system to be a retention/drainage aid; however its potential to improve strength has previously been neglected. This research focused on the effect of both nanosilica and cationic starch on certain crucial physical and mechanical properties of fine paper compared with a paper sheet containing no additives to evaluate how this system can compensate for using more filler in fine paper. In previous studies, it was suggested that the cationic starch-nanosilica system induces much tinier flocs and thus possibly results in better strength properties. In this respect, results revealed that cationic starch did, however, improve tensile index; this effect weakened at higher filler levels. Cationic starch and nanoparticles both improved internal bonding, while cationic starches' effect was more prominent. With more filler, tear index suffered. Although addition of cationic starch partly compensated this negative effect with filled papers, nanoparticles did not seem to have an obvious effect. Therefore, cationic starch provided the limited potential of using more filler and nanoparticles may do it indirectly.
There are various applications of organosilicon compounds in papermaking. Additionally, organosilicons have been applied to improve the water resistance of some lignocellulosic materials. The performance, however, of such compounds for the hydrophobation of paperboard is unclear. In this study, an organosilicon solution was internally and externally applied to old corrugated container (OCC) paperboard at ambient temperature. Examination of the infrared spectra of treated paperboard confirmed the presence of CH2 groups and hydrophobic organic chains of organosilicon in the treated paperboard. Both internal and external treatment of the paperboard helped its resistance to water, though external treatment was more successful in the late reduction of the contact angle of water droplets and also in reducing water uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.