Highly miniaturised, wearable computing and communication systems allow unobtrusive, convenient and long term monitoring of a range of physiological parameters. For long term operation from the physically smallest batteries, the average power consumption of a wearable device must be very low. It is well known that the overall power consumption of these devices can be reduced by the inclusion of low power consumption, real-time compression of the raw physiological data in the wearable device itself. Compressive sensing is a new paradigm for providing data compression: it has shown significant promise in fields such as MRI; and is potentially suitable for use in wearable computing systems as the compression process required in the wearable device has a low computational complexity. However, the practical performance very much depends on the characteristics of the signal being sensed. As such the utility of the technique cannot be extrapolated from one application to another. Long term electroencephalography (EEG) is a fundamental tool for the investigation of neurological disorders and is increasingly used in many non-medical applications, such as brain-computer interfaces. This article investigates in detail the practical performance of different implementations of the compressive sensing theory when applied to scalp EEG signals.
Compared with von Neumann's computer architecture, neuromorphic systems offer more unique and novel solutions to the artificial intelligence discipline. Inspired by biology, this novel system has implemented the theory of human brain modeling by connecting feigned neurons and synapses to reveal the new neuroscience concepts. Many researchers have vastly invested in neuro-inspired models, algorithms, learning approaches, operation systems for the exploration of the neuromorphic system and have implemented many corresponding applications. Recently, some researchers have demonstrated the capabilities of Hopfield algorithms in some large-scale notable hardware projects and seen significant progression. This paper presents a comprehensive review and focuses extensively on the Hopfield algorithm's model and its potential advancement in new research applications. Towards the end, we conclude with a broad discussion and a viable plan for the latest application prospects to facilitate developers with a better understanding of the aforementioned model in accordance to build their own artificial intelligence projects. Neuromorphic computing, neuro-inspired model, Hopfield algorithm, artificial intelligence.
INDEX TERMS
Abstract-Compressive sensing is a new data compression paradigm that has shown significant promise in fields such as MRI. However, the practical performance of the theory very much depends on the characteristics of the signal being sensed. As such the utility of the technique cannot be extrapolated from one application to another. Electroencephalography (EEG) is a fundamental tool for the investigation of many neurological disorders and is increasingly also used in many non-medical applications, such as Brain-Computer Interfaces. This paper characterises in detail the practical performance of different implementations of the compressive sensing theory when applied to scalp EEG signals for the first time. The results are of particular interest for wearable EEG communication systems requiring low power, real-time compression of the EEG data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.