To investigate the long-term in vivo effect of laser dosimetry on rabbit septal cartilage integrity, viability, and mechanical behavior. Methods: Nasal septal cartilage specimens (control and irradiated pairs) were harvested from 18 rabbits. Specimens were mechanically deformed and irradiated with an Nd:YAG laser across a broad dosimetry range (4-8 W and 6-16 seconds). Treated specimens and controls were autologously implanted into a subperichondrial auricular pocket. Specimens were harvested an average±SD of 208±35 days later. Tissue integrity, histology, chondrocyte viability, and mechanical property evaluations were performed. Tissue damage results were compared with Monte Carlo simulation models. Results: All laser-irradiated specimens demonstrated variable tissue resorption and calcification, which increased with increased dosimetry. Elastic moduli of the specimens were significantly either lower or higher than controls (all PϽ.05). Viability assays illustrated a total loss of viable chondrocytes within the laser-irradiated zones in all treated specimens. Histologic examination confirmed these findings. Experimental results were consistent with damage profiles determined using numerical simulations. Conclusion: The loss of structural integrity and chondrocyte viability observed across a broad dosimetry range underscores the importance of spatially selective heating methods prior to initiating application in human subjects.
After SMR, rabbit cartilage tissue can regenerate and form matrix within the potential space created by surgery. The surrounding stem cell-rich perichondrium may be the site of origin for these chondrocytes. These findings suggest that after SMR of the human nasal septum, it may be possible for new cartilage tissue to develop provided the mucosa is well approximated. This biologic effect may be enhanced by insertion of cytokine-rich tissue scaffolds that exploit the native ability of septal perichondrium to regenerate and repair cartilage tissue.
Successful management of the aging upper eyelid region in the Asian patient requires a unique skill set and clinical experience. The surgeon must exhibit a thorough understanding of the unique anatomy of the Asian eyelid and its variations and of the cultural expectations of the patient and must possess a unique set of surgical skills such as de novo creation of the supratarsal crease as well as complementary procedures such as fat transfer used for volume augmentation of the periorbital region. The modern approach outlined here summarizes the key elements necessary to restore the youthful appearance of the upper eyelid region in a natural and ethnically consistent fashion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.