Several recent studies have demonstrated the promise of deep visuomotor policies for robot manipulator control. Despite impressive progress, these systems are known to be vulnerable to physical disturbances, such as accidental or adversarial bumps that make them drop the manipulated object. They also tend to be distracted by visual disturbances such as objects moving in the robot's field of view, even if the disturbance does not physically prevent the execution of the task. In this paper, we propose an approach for augmenting a deep visuomotor policy trained through demonstrations with Task Focused visual Attention (TFA). The manipulation task is specified with a natural language text such as "move the red bowl to the left". This allows the visual attention component to concentrate on the current object that the robot needs to manipulate. We show that even in benign environments, the TFA allows the policy to consistently outperform a variant with no attention mechanism. More importantly, the new policy is significantly more robust: it regularly recovers from severe physical disturbances (such as bumps causing it to drop the object) from which the baseline policy, i.e. with no visual attention, almost never recovers. In addition, we show that the proposed policy performs correctly in the presence of a wide class of visual disturbances, exhibiting a behavior reminiscent of human selective visual attention experiments. Our proposed approach consists of a VAE-GAN network which encodes the visual input and feeds it to a Motor network that moves the robot joints. Also, our approach benefits from a teacher network for the TFA that leverages textual input command to robustify the visual encoder against various types of disturbances.
Given a video and a description sentence with one missing word (we call it the "source sentence"), Video-Fill-Inthe-Blank (VFIB) problem is to find the missing word automatically. The contextual information of the sentence, as well as visual cues from the video, are important to infer the missing word accurately. Since the source sentence is broken into two fragments: the sentence's left fragment (before the blank) and the sentence's right fragment (after the blank), traditional Recurrent Neural Networks cannot encode this structure accurately because of many possible variations of the missing word in terms of the location and type of the word in the source sentence. For example, a missing word can be the first word or be in the middle of the sentence and it can be a verb or an adjective. In this paper, we propose a framework to tackle the textual encoding: Two separate LSTMs (the LR and RL LSTMs) are employed to encode the left and right sentence fragments and a novel structure is introduced to combine each fragment with an external memory corresponding the opposite fragments. For the visual encoding, end-to-end spatial and temporal attention models are employed to select discriminative visual representations to find the missing word. In the experiments, we demonstrate the superior performance of the proposed method on challenging VFIB problem. Furthermore, we introduce an extended and more generalized version of VFIB, which is not limited to a single blank. Our experiments indicate the generalization capability of our method in dealing with such more realistic scenarios.
Given a video and its incomplete textural description with missing words, the Video-Fill-in-the-Blank (ViFitB) task is to automatically find the missing word. The contextual information of the sentences are important to infer the missing words; the visual cues are even more crucial to get a more accurate inference. In this paper, we presents a new method which intuitively takes advantage of the structure of the sentences and employs merging LSTMs (to merge two LSTMs) to tackle the problem with embedded textural and visual cues. In the experiments, we have demonstrated the superior performance of the proposed method on the challenging "Movie Fill-in-the-Blank" dataset [5].
This paper introduces a new problem, called Visual Text Correction (VTC), i.e., finding and replacing an inaccurate word in the textual description of a video. We propose a deep network that can simultaneously detect an inaccuracy in a sentence, and fix it by replacing the inaccurate word(s). Our method leverages the semantic interdependence of videos and words, as well as the short-term and long-term relations of the words in a sentence. Our proposed formulation can solve the VTC problem employing an End-to-End network in two steps: (1)Inaccuracy detection, and (2)correct word prediction. In detection step, each word of a sentence is reconstructed such that the reconstruction for the inaccurate word is maximized. We exploit both Short Term and Long Term Dependencies employing respectively Convolutional N-Grams and LSTMs to reconstruct the word vectors. For the correction step, the basic idea is to simply substitute the word with the maximum reconstruction error for a better one. The second step is essentially a classification problem where the classes are the words in the dictionary as replacement options. Furthermore, to train and evaluate our model, we propose an approach to automatically construct a large dataset for the VTC problem. Our experiments and performance analysis demonstrates that the proposed method provides very good results and also highlights the general challenges in solving the VTC problem. To the best of our knowledge, this work is the first of its kind for the Visual Text Correction task.
We present MMFT-BERT (MultiModal Fusion Transformer with BERT encodings), to solve Visual Question Answering (VQA) ensuring individual and combined processing of multiple input modalities. Our approach benefits from processing multimodal data (video and text) adopting the BERT encodings individually and using a novel transformerbased fusion method to fuse them together. Our method decomposes the different sources of modalities, into different BERT instances with similar architectures, but variable weights. This achieves SOTA results on the TVQA dataset. Additionally, we provide TVQA-Visual, an isolated diagnostic subset of TVQA, which strictly requires the knowledge of visual (V) modality based on a human annotator's judgment. This set of questions helps us to study the model's behavior and the challenges TVQA poses to prevent the achievement of super human performance. Extensive experiments show the effectiveness and superiority of our method 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.