SUMMARYIn this paper, a new algorithm called TGA is introduced which defines the concept of time more naturally for the first time. A parameter called TimeToLive is considered for each chromosome, which is a time duration in which it could participate in the process of the algorithm. This will lead to keeping the dynamism of algorithm in addition to maintaining its convergence sufficiently and stably. Thus, the TGA guarantees not to result in premature convergence or stagnation providing necessary convergence to achieve optimal answer. Moreover, the mutation operator is used more meaningfully in the TGA. Mutation probability has direct relation with parent similarity. This kind of mutation will decrease ineffective mating percent which does not make any improvement in offspring individuals and also it is more natural. Simulation results show that one run of the TGA is enough to reach the optimum answer and the TGA outperforms the standard genetic algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.