Graph datasets are common in many application domains and for which their graphs are usually massive. One solution to process such massive graphs is summarization. There are two kinds of graphs, stationary and stream. For stationary graphs, a number of summarization algorithms are available while for graph stream there is no a comprehensive summarization method that summarizes a graph stream based on the structure, vertex attributes or both with varying contributions. This is because of challenges of graph stream, which are volume of data and changing of data over time. In this paper, we propose a method based on sliding-window model for which summarizes a graph stream based on a combination of the structure and vertex attributes. We proposed a new structure for summary graphs and also proposed new methods for comparing two summary graphs. To the best of our knowledge, this is the first method that summarizes a graph stream based on both the structure and vertex attributes with varying contributions. Through extensive experiments on real dataset of Amazon co-purchasing products, we have demonstrated the performance of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.