Abstract-Cloud controllers support the operation and quality management of dynamic cloud architectures by automatically scaling the compute resources to meet performance guarantees and minimize resource costs. Existing cloud controllers often resort to scaling strategies that are codified as a set of architecture adaptation rules. However, for a cloud provider, deployed application architectures are black-boxes, making it difficult at design time to define optimal or pre-emptive adaptation rules. Thus, the burden of taking adaptation decisions often is delegated to the cloud application. We propose the dynamic learning of adaptation rules for deployed application architectures in the cloud. We introduce FQL4KE, a self-learning fuzzy controller that learns and modifies fuzzy rules at runtime. The benefit is that we do not have to rely solely on precise design-time knowledge, which may be difficult to acquire. FQL4KE empowers users to configure cloud controllers by simply adjusting weights representing priorities for architecture quality instead of defining complex rules. FQL4KE has been experimentally validated using the cloud application framework ElasticBench in Azure and OpenStack. The experimental results demonstrate that FQL4KE outperforms both a fuzzy controller without learning and the native Azure auto-scaling.
Abstract-The software engineering community has proposed numerous approaches for making software self-adaptive. These approaches take inspiration from machine learning and control theory, constructing software that monitors and modifies its own behavior to meet goals. Control theory, in particular, has received considerable attention as it represents a general methodology for creating adaptive systems. Control-theoretical software implementations, however, tend to be ad hoc. While such solutions often work in practice, it is difficult to understand and reason about the desired properties and behavior of the resulting adaptive software and its controller.This paper discusses a control design process for software systems which enables automatic analysis and synthesis of a controller that is guaranteed to have the desired properties and behavior. The paper documents the process and illustrates its use in an example that walks through all necessary steps for self-adaptive controller synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.