In this paper, we describe the new Husehölder's method free from second derivatives for solving nonlinear equations. The new Husehölder's method has convergence of order five and efficiency index 5 1 3 ≈ 1.70998, which converges faster than the Newton's method, the Halley's method and the Husehölder's method. The comparison table demonstrate the faster convergence of our method. Polynomiography via the new Husehölder's method is also presented.
In this paper, we suggest and analyze two new iterative methods for solving nonlinear scalar equations namely: the modified generalized Newton Raphson's method and generalized Newton Raphson's method free from second derivative are having convergence of order six and five respectively. We also give several examples to illustrate the efficiency of these methods.
In this paper, we proposed and analyzed three new root-finding algorithms for solving nonlinear equations in one variable. We derive these algorithms with the help of variational iteration technique. We discuss the convergence criteria of these newly developed algorithms. The dominance of the proposed algorithms is illustrated by solving several test examples and comparing them with other well-known existing iterative methods in the literature. In the end, we present the basins of attraction using some complex polynomials of different degrees to observe the fractal behavior and dynamical aspects of the proposed algorithms.
In this paper, we developed two new numerical algorithms for finding zeros of nonlinear equations in one dimension and one of them is second derivative free which has been removed using the interpolation technique. We derive these algorithms with the help of Taylor’s series expansion and Golbabai and Javidi’s method. The convergence analysis of these algorithms is discussed. It is established that the newly developed algorithms have sixth order of convergence. Several numerical examples have been solved which prove the better efficiency of these algorithms as compared to other well-known iterative methods of the same kind. Finally, the comparison of polynomiographs generated by other well-known iterative methods with our developed algorithms has been made which reflects their dynamical aspects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.