Considering urbanization can lead to irreversible land transformations, it is crucial to provide city managers, environmental resources managers, and even people with accurate predicting land use/land cover (LULC) to accomplish sustainable development goals. Although many methods have been used to predict land use/land cover (LULC), few studies have compared them. Therefore, by analyzing the results of various prediction models and, consequently, recognizing the most accurate and reliable ones, we can assist city managers, environmental resources managers, and researchers.. In this regard, this research compares Cellular Automata–Markov Chain and Artificial Neural Network (ANN) as frequently used models to overcome this gap and help those concerned about sustainable development to predict urban sprawl with the most reliable accuracy. In the first step, Landsat satellite images acquired in 2000, 2010, and 2020 were classified with Maximum Likelihood Classification (MLC), and LULC maps were prepared for each year. In the second step, to investigate the LULC prediction, validation of the CA–Markov and ANN methods was performed. In this way, the LULC simulation map of 2020 was prepared based on the LULC map of 2000 and 2010; next, the predicted LULC map of 2020 and the actual LULC map for 2020 were compared using correctness, completeness, and quality indices. Finally, the LULC map for 2030 was generated using both algorithms, and the corresponding change map was extracted, showing a reduction in soil and vegetation areas (respectively, 39% and 12%) and an expansion (58%) in built-up regions. Moreover, the validation test of the methods showed that the two algorithms were closer to each other; however, ANN had the highest completeness (96.21%) and quality (93.8%), while CA–Markov had the most correctness (96.47%). This study showed that the CA–Markov algorithm is more accurate in predicting the future of larger areas with higher allocations (urban and vegetation cover) while the ANN algorithm is more accurate in predicting the future of small areas with fewer allocations (soil and rock).
A correctly obtained Land-use/land-cover (LULC) prediction map is essential to under-standing and assessing future patterns. In the study, the LULC map of Urmia/Iran in 2030 was produced using two different prediction methods CA-Markov and Artificial Neural Network (ANN). In general, the study followed a methodology consisting of three steps. In the first steps, Landsat satellite images acquired in 2000, 2010 and 2020 were classified with maximum likelihood algorithm and LULC maps were prepared for each year. In the second stage, to investigate the LULC prediction methods' validation (CA-Markov and ANN) the LULC prediction map of 2020 was produced using the LULC map of 2000 and 2010; In this step, the predicted LULC map of 2020 and the actual LULC map of 2020 were evaluated by correctness, completeness and quality indexes. Finally, The LULC map for 2030 was prepared using all two algorithms and the change map was extracted. The results show that the area of soil and vegetation decreased, and built-up regions increased during the research period. The methods validation results show that the two algorithms are much closer to each other. Nevertheless, in general, ANN has the highest completeness (96.21%) and quality (93.8%) and CA-Markov the most correctness (96.47). This study shows that the CA-Markov algorithm is most successful in predicting the future that had larger areas and a higher percentage in the region (urban and vegetation cover) and the ANN algorithm in predicting phenomena that had smaller levels with fewer percentages (soil and rock).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.