Abstract.A mobile robot autonomously explores the environment by interpreting the scene, building an appropriate map, and localizing itself relative to this map. This paper presents a Hybrid filter based Simultaneous Localization and Mapping (SLAM) approach for a mobile robot to compensate for the Unscented Kalman Filter (UKF) based SLAM errors inherently caused by its linearization process. The proposed Hybrid filter consists of a Multi Layer Perceptron (MLP) for neural network and UKF which is a milestone for SLAM applications. The proposed approach, based on a Hybrid filter, has some advantages in handling a robotic system with nonlinear motions because of the learning property of the MLP neural network. The simulation results show the effectiveness of the proposed algorithm comparing with an UKF based SLAM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.