The aim of this paper is to investigate the effect of cutting speed and uncut chip thickness on cutting performance. A Finite Element Method (FEM) based on the ABAQUS explicit software which involves Johnson-Cook material mode and Coulombs friction law was used to simulate of High Speed Machining (HSM) of AISI 1045 steel. In this simulation work, feed rate ranging from 0.05 mm/rev to 0.13 mm/rev and cutting speed ranging from 200 m/min to 600 m/min at three different cutting speeds were investigated. From the simulation results it was observed that increasing feed rate and cutting speed lead to increase temperature and stress distribution at tool/chip interface. The results obtained from this study are highly essential to predict machining induced residual stresses and thermo-mechanical deformation related properties on the machined surface.
A Finite Element Modeling (FEM) and Simulation was Used to Investigate the Effect of Tool Rake Angle, Cutting Speed and Feed Rate on the Cutting Temperature of Tial6v4 Alloy. the Purpose of this Study was to Find Proper Cutting Parameters for Machining of Titanium Alloy where Cutting Temperature was Lowest. A FEM Based on ABAQUS Software which Involves Jonson-Cook Material Model and Coulomb’s Friction Law was Applied to Simulate an Orthogonal Cutting Process. in this Simulation Work, a Range of Tool Rake Angle from 0° to 10°, a Range of Cutting Speed from 300 m/min to 600 m/min and a Range of Feed Rate between 0.1 Rev/mm and 0.25 Rev/mm were Investigated. the Simulation Results Indicated that Increase in Rake Angle Reduces Cutting Temperature while Increasing Cutting Speed and Feed Rate Increase the Cutting Temperature.
This paper deals with finite element modeling (FEM) and simulation of machining of titanium alloy and H-13 tool steel. Titanium alloys are very suitable for airframe manufacture and aircraft as H-13 uses forging dies and machined die casting. The machinability of both metals was evaluated by high temperature and tool wear. Finite element simulation was performed with ABAQUS explicit software to predict cutting temperature and stress distribution during metal cutting process. The purpose of this study was evaluation the performance of PCBN cutting tool material on machining of titanium alloy and H-13. It was found that PCBN tool can resistant well against high thermal shocks, high temperature and stress distribution when machining difficult to cut materials. The results can give a better understanding of cutting tool material for metal cutting process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.