Neuromuscular diseases are often caused by inherited mutations that lead to progressive skeletal muscle weakness and degeneration. In diverse populations of normal healthy mice, we observed correlations between the abundance of mRNA transcripts related to mitochondrial biogenesis, the dystrophin-sarcoglycan complex, and nicotinamide adenine dinucleotide (NAD+) synthesis, consistent with a potential role for the essential cofactor NAD+ in protecting muscle from metabolic and structural degeneration. Furthermore, the skeletal muscle transcriptomes of patients with Duchene’s muscular dystrophy (DMD) and other muscle diseases were enriched for various poly[adenosine 5’-diphosphate (ADP)–ribose] polymerases (PARPs) and for nicotinamide N-methyltransferase (NNMT), enzymes that are major consumers of NAD+ and are involved in pleiotropic events, including inflammation. In the mdx mouse model of DMD, we observed significant reductions in muscle NAD+ levels, concurrent increases in PARP activity, and reduced expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD+ biosynthesis. Replenishing NAD+ stores with dietary nicotinamide riboside supplementation improved muscle function and heart pathology in mdx and mdx/Utr−/− mice and reversed pathology in Caenorhabditis elegans models of DMD. The effects of NAD+ repletion in mdx mice relied on the improvement in mitochondrial function and structural protein expression (α-dystrobrevin and δ-sarcoglycan) and on the reductions in general poly(ADP)-ribosylation, inflammation, and fibrosis. In combination, these studies suggest that the replenishment of NAD+ may benefit patients with muscular dystrophies or other neuromuscular degenerative conditions characterized by the PARP/NNMT gene expression signatures.
BackgroundBuilding both strength and endurance has been a challenge in exercise training in the elderly, but dietary supplements hold promise as agents for improving muscle adaptation. Here, we test a formulation of natural products (AX: astaxanthin, 12 mg and tocotrienol, 10 mg and zinc, 6 mg) with both anti‐inflammatory and antioxidant properties in combination with exercise. We conducted a randomized, double‐blind, placebo‐controlled study of elderly subjects (65–82 years) on a daily oral dose with interval walking exercise on an incline treadmill.MethodsForty‐two subjects were fed AX or placebo for 4 months and trained 3 months (3×/week for 40–60 min) with increasing intervals of incline walking. Strength was measured as maximal voluntary force (MVC) in ankle dorsiflexion exercise, and tibialis anterior muscle size (cross‐sectional area, CSA) was determined from magnetic resonance imaging.ResultsGreater endurance (exercise time in incline walking, >50%) and distance in 6 min walk (>8%) accompanied training in both treatments. Increases in MVC by 14.4% (±6.2%, mean ± SEM, P < 0.02, paired t‐test), CSA by 2.7% (±1.0%, P < 0.01), and specific force by 11.6% (MVC/CSA, ±6.0%, P = 0.05) were found with AX treatment, but no change was evident in these properties with placebo treatment (MVC, 2.9% ± 5.6%; CSA, 0.6% ± 1.2%; MVC/CSA, 2.4 ± 5.7%; P > 0.6 for all).ConclusionsThe AX formulation improved muscle strength and CSA in healthy elderly in addition to the elevation in endurance and walking distance found with exercise training alone. Thus, the AX formulation in combination with a functional training programme uniquely improved muscle strength, endurance, and mobility in the elderly.
Background Loss of mitochondrial function contributes to fatigue, exercise intolerance and muscle weakness, and is a key factor in the disability that develops with age and a wide variety of chronic disorders. Here, we describe the impact of a first-in-class cardiolipin-binding compound that is targeted to mitochondria and improves oxidative phosphorylation capacity (Elamipretide, ELAM) in a randomized, double-blind, placebo-controlled clinical trial. Methods Non-invasive magnetic resonance and optical spectroscopy provided measures of mitochondrial capacity (ATPmax) with exercise and mitochondrial coupling (ATP supply per O2 uptake; P/O) at rest. The first dorsal interosseous (FDI) muscle was studied in 39 healthy older adult subjects (60 to 85 yrs of age; 46% female) who were enrolled based on the presence of poorly functioning mitochondria. We measured volitional fatigue resistance by force-time integral over repetitive muscle contractions. Results A single ELAM dose elevated mitochondrial energetic capacity in vivo relative to placebo (ΔATPmax; P = 0.055, %ΔATPmax; P = 0.045) immediately after a 2-hour infusion. No difference was found on day 7 after treatment, which is consistent with the half-life of ELAM in human blood. No significant changes were found in resting muscle mitochondrial coupling. Despite the increase in ATPmax there was no significant effect of treatment on fatigue resistance in the FDI. Conclusions These results highlight that ELAM rapidly and reversibly elevates mitochondrial capacity after a single dose. This response represents the first demonstration of a pharmacological intervention that can reverse mitochondrial dysfunction in vivo immediately after treatment in aging human muscle.
Natural indicators provide intrinsic probes of metabolism, biogenesis and oxidative protection. Nicotinamide adenine dinucleotide metabolites (NAD(P)) are one class of indicators that have roles as co-factors in oxidative phosphorylation, glycolysis, and anti-oxidant protection, as well as signaling in the mitochondrial biogenesis pathway. These many roles are made possible by the distinct redox states (NAD(P)+ and NAD(P)H), which are compartmentalized between cytosol and mitochondria. Here we provide evidence for detection of NAD(P)+ and NAD(P)H in separate mitochondrial and cytosol pools in vivo in human tissue by phosphorus magnetic resonance spectroscopy (31P MRS). These NAD(P) pools are identified by chemical standards (NAD+, NADP+, and NADH) and by physiological tests. A unique resonance reflecting mitochondrial NAD(P)H is revealed by the changes elicited by elevation of mitochondrial oxidation. The decline of NAD(P)H with oxidation is matched by a stoichiometric rise in the NAD(P)+ peak. This unique resonance also provides a measure of the improvement in mitochondrial oxidation that parallels the greater phosphorylation found after exercise training in these elderly subjects. The implication is that the dynamics of the mitochondrial NAD(P)H peak provides an intrinsic probe of the reversal of mitochondrial dysfunction in elderly muscle. Thus, non-invasive detection of NAD(P)+ and NAD(P)H in cytosol vs. mitochondria yields natural indicators of redox compartmentalization and sensitive intrinsic probes of the improvement of mitochondrial function with an intervention in human tissues in vivo. These natural indicators hold the promise of providing mechanistic insight into metabolism and mitochondrial function in vivo in a range of tissues in health, disease and with treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.